

Welcome to Borealis’s documentation!

	SuperDARN Canada System Specifications
	Digital Radio Equipment

	Control Computer

	Networking

	Rack and Cabling

	Full System Setup Procedures
	Hardware

	Software

	Starting and Stopping the Radar
	Manual Start-up

	Automated Start-up

	Stopping the Radar

	Scheduling

	Building an Experiment
	Introduction to Borealis Slices

	Interfacing Types Between Slices

	Slice Interfacing Examples

	Experiment-Wide Attributes

	Slice Keys

	Experiment Example

	Config Parameters

	Borealis Processes
	Runtime Processes

	Experiment Components

	Utils

	Borealis Data Files
	Data Generation

	Reading Data

	Data Storage and Deletion

	Borealis Monitoring
	Nagios

	Installation

	Lab Testing

	Tools
	NEC

	NTP

	Common Failure Modes
	N200 Power loss

	N200 10MHz reference loss

	N200 PPS reference loss

	N200 Ethernet loss

	Borealis Startup with N200 PPS reference missing

	Octoclock GPS Power loss

	TXIO Cable disconnect from N200 or Transmitter

	Shared memory full/Borealis unable to delete shared memory

	remote_server.py Segfaults, other programs segfault (core-dump)

	‘CPU stuck’ messages from kernel, not possible to reboot

	Glossary

Indices and tables

	Index

	Module Index

	Search Page

SuperDARN Canada System Specifications

Digital Radio Equipment

	NOTE : ALL cables are phase matched unless specified otherwise

	
	17x Ettus USRP N200 (16 and 1 spare)
	
	17x Ettus LFTX daughterboards

	17x Ettus LFRX daughterboards

	1x Ettus Octoclock-g (includes GPSDO)

	2x Ettus Octoclock

	51x ~8 1/4” SMA bulkhead Female to Male RG-316 for daughterboards

	18x 48” SMA Male to Male RG-316 for PPS signals

	18x 48” SMA Male to Male RG-316 for 10MHz REF signals

	1x SMA Male to 0.1” pin header RG-316 for PPS signal input to motherboard

	GPS Antenna (Male SMA connector)

	17x Custom TXIO Revision 5.0 board (for transmitter interfacing)

	22x Mini-Circuits ZFL-500LN pre-amps (20 and 2 spare)

	8x coax cables and adapters for to/from INTF (interferometer) pre-amps

	32x coax cables for to/from main array filters and pre-amps inside transmitter

	1x 15V, 0.5A power supply (INTF pre-amps)

Control Computer

	1x GeForce GTX 2080 or better

	2x 16GB DDR4

	1x Monitor

	1x Power supply, 1000W 80 Plus Gold or better

	1x Intel Core i9 10 core or better

	1x Cpu liquid cooling unit

	1x CPU socket compatible motherboard with serial port header for PPS discipline

	1x 256GB SSD

	1x 1TB HDD

	1x Intel X550-T2 10Gb PCIe network card NOTE: Intel 82579LM controllers WILL NOT WORK

Networking

	3x Netgear XS708E-200NES (North American model #) 10Gb switches (parent model name is XS708Ev2)

	27x SSTP CAT 6a 7ft cables or better*

	2x SSTP CAT 6a 15ft cables*

	Note that the network cables needs to be verified for the whole system
	as not all cables seem to work reliably.

Models tested and known to work include:

	Cab-CAT6AS-05[GR|BK|GY|RE|WH]

	Cab-CAT6AS-15GR

Models that were tested and do not work:

	CAT 5e cables

	Non SSTP cables (not dual shielded)

	Cab-Cat7-6BL

	Cab-Cat7-6WH

Rack and Cabling

	4x 8 outlet rackmount PDU

	2x APC AP7900B rackmount PDU

	1x 4 post 42U rack

	4x custom-made USRP N200 rackmount shelves (or Ettus ones)

	1x rackmount shelf for interferometer pre-amps

Full System Setup Procedures

Here are the notes on SuperDARN Canada’s Borealis setup procedures.

	Hardware
	System Overview and Rack Setup

	USRPs

	Pre-amps

	Computer and Networking

	Software

Hardware

System Overview and Rack Setup

Below is a recommended configuration in comparison to a common SuperDARN system:

[image: Block diagram of RX DSP software]

Here is an actual rack configuration as installed by SuperDARN Canada at the Saskatoon (SAS) SuperDARN site. Note that space has been allowed between the rackmount items to allow for cable routing. There is a lot of cabling involved at the front of the devices.

[image: Rack photo]

The items installed in the rack at the Saskatoon site are listed below in order from top to bottom in the rack:

	Netgear XS708E 10Gb switch

	USRP rackmount shelf (in-house design) with 4 x N200s

	Ettus Octoclock

	USRP rackmount shelf (in-house design) with 4 x N200s

	Netgear XS708E 10Gb switch

	Rackmount shelf with 4 x low-noise amplifiers for the interferometer array channels, and a terminal strip for power (supplied by 15V Acopian)

	Ettus Octoclock-G (with GPSDO)

	USRP rackmount shelf (in-house design) with 4 x N200s

	Ettus Octoclock

	USRP rackmount shelf (in-house design) with 4 x N200s

	Netgear XS708E 10Gb switch

	Synology Network Attached Storage device

	APC Smart UPS

	15V Acopian power supply

(3 x APC PDUs (AP7900B) are mounted at the back of the rack)

The Borealis computer is not in a rackmount case, instead it is placed to the right of the rack.

USRPs

This guide assumes set up of a brand new, unopened Ettus N200.

Initial Test of the Unit

Install Daughterboards

	Open the unit and install the LFTX and LFRX daughtercards using hardware provided. The main USRP PCB is clearly marked with where to connect TX and RX daughterboards, and there is only one way they can fit while still allowing all the screw holes to line-up. The RX daughterboard is located directly above the fan power connection at the back of the motherboard.

	Connect the output of TXA using an SMA cable to the custom-added SMA connection point on the front of the USRP using one of the SMA Male to female bulkhead SMA cables. Connect the output of RXA to RF1 and RXB to RF2 on the front of the USRP using two more SMA Male to female bulkhead cables.

	Verify that the jumper J510 on the N200 motherboard is jumping the two 0.1” header pins furthest from the board edge. The jumper is located behind the CLK_REF (REF IN) SMA connector on the front of the N200. This ensures that the reference clock input is coming from the front-panel SMA connector, and not the secondary SMA connector located on the motherboard labeled ‘J507 CLK_REF 2’.

Connect to the USRP

	USRPs have a default IP address of 192.168.10.2. Assign a computer network interface an address that can communicate in this subnet. Connect the USRP to the computer’s network interface either directly or through one of the switches from the system specifications. Connect the USRP power supply.

	Verify the board powers on and is discoverable. The USRP should be discoverable by pinging 192.168.10.2. Ettus’ USRP UHD library supplies a tool called uhd_usrp_probe which should also be able to detect the device. See software setup for notes on installing UHD. The USRP may require a firmware upgrade.

	Connect an SMA T connection (F-M-F) to the TX output from the front of the N200, connect another SMA T (F-M-F) to the first T. Connect one end of the second SMA T to RX1, and the other end to RX2 with phase matched SMA M-M cables. Connect the free SMA output of the first SMA T to the scope. Connect the Octoclock PPS and 10MHz reference signals to the USRP. Make sure that the jumper on J510 is in the rightmost position connecting the front panel 10MHz as the system reference.

Test the USRP

	Use the UHD utilities rx_samples_to_file, tx_bursts and txrx_loopback_to_file to verify the USRP works. Use the scope to see the transmit signal. The RX samples will be a binary file that can be quickly read in a plotted with Numpy/Matplotlib. While testing, watch the front panel LEDs to see that they work as expected.

Disassembly for Enclosure Modifications

	If the USRP is working correctly, the inner motherboard, fan, daughtercards and RF cables can all be removed from the unit. Carefully peel the product sticker and store with the motherboard, this contains the MAC address, SN and PN of the unit. All removed components and the sticker can be stored in the anti-static bags that were supplied with the unit. The enclosure is ready for machining the additional holes. Ensure that you note which way the fan was installed for reinstallation later.

Custom Enclosure Modifications

The custom machining involves the following machining steps

	Five extra SMA holes that are ‘D’ shaped to fit most standard SMA bulkhead connectors. Four of these holes are on the back of the N200, and one is on the front, in line with the two existing RF1 and RF2 SMA bulkhead holes.

	A DSUB shaped hole for a DE9 connector at the rear of the unit for connection to existing SuperDARN transmitters.

	Four holes for standard 5mm LED clips (6.35 +/-0.05mm diameter) with 9.5mm centers to appropriately space them.

Installing the Custom-Made TXIO Board

	Once the enclosures are machined, the electronics and components can all be reinstalled. Place the product sticker back in place on the rear of the unit. There are slight indentations in the case to indicate where the product sticker goes. Connect RXA to port RF1, connect RXB to port RF2, and connect TXA to the additional front panel hole that was added.

	Install the LEDs (TODO: Add description of how to install LED clip here) into their corresponding holes. The order of the LED install patterns from left to right are the TX only indicator (RED), the IDLE indicator (YELLOW), the RX only indicator (GREEN) and the TR indicator (BLUE). Optionally, add labels to the LEDs on the front panel.

	Install the fan, making sure to re-install it the same way it was originally installed.

[image: Arrows indicate fan rotation and air flow direction]
Pre-Assemble the TXIO board before installation into the N200

	Begin by connecting eight 0.1” female-female jumper cables to pins 1-4 and 6-9 of the D-sub connector. The other ends of these wires connects to header J2 on the TXIO board

	Colour

	Sig

	DSUB

	J2

	Brown

	AGC-

	1

	7

	Orange

	TR-

	2

	8

	Blue

	TM-

	3

	2

	Grey

	LP-

	4

	1

	[NC]

	[NC]

	5

	[NC]

	Red

	AGC+

	6

	9

	Yellow

	TR+

	7

	10

	Green

	TM+

	8

	4

	Purple

	LP+

	9

	3

[image: TXIO dsub wire connections]
[image: TXIO lrfx signal connections]

	Connect the four U.Fl to SMA female bulkhead cables to J4, J5, J6 and J7 of the TXIO board. Orientation of the cables doesn’t matter, as they will fit in the N200 case if rotated properly.

[image: TXIO PCB view]

	Connect 4 pairs of 0.1” female to female jumper wires to header J3 on the TXIO board. THe other ends will connect to the LEDs already installed in the N200 case. There is no need to connect anything to the 4 rightmost pins on J3, these are expansion headers and two are connected (label ‘OUT’) to the leftover open collector pins on the LED driver chip U5 (SN7406D), the other two (labels ‘_0’ and ‘_1’) are connected to the 5V rail via pullup resistors R5 and R6. NOTE If you use your own voltage supply with the open-collector outputs, be aware that the maximum voltage is 30V, and the maximum current sink is 40mA. See the SN7406D datasheet for more details.

	J3 Pin label

	Wire Colour

	LED Connection

	TXo

	Brown

	RED-

	RED

	Red

	RED+

	IDLE

	Orange

	Yellow-

	YLW

	Yellow

	Yellow+

	RX

	Blue

	Green-

	GRN

	Green

	Green+

	TX

	Grey

	Blue-

	BLU

	Purple

	Blue+

NOTE ‘-’ means cathode, ‘+’ means anode

	
	Connect 10 0.1” female to female jumper wires to J1, the other ends will connect to the LFRX daughterboard pin headers.
	

	J1 Pin

	Pin label

	Wire colour

	LFRX header

	LFRX Pin

	1

	OUT_0

	[NC]

	[NC]

	[NC]

	2

	OUT_1

	[NC]

	[NC]

	[NC]

	3

	GND

	Brown

	J16

	‘DGND’

	4

	+6V

	Red

	J16

	‘6V’

	5

	RXo

	Orange

	J15

	io_rx[1]

	6

	Txo

	Yellow

	J15

	io_rx[3]

	7

	TR

	Green

	J15

	io_rx[5]

	8

	IDLE

	Blue

	J15

	io_rx[7]

	9

	LP

	Purple

	J15

	io_rx[9]

	10

	AGC

	Grey

	J15

	io_rx[11]

	11

	TM

	White

	J15

	io_rx[13]

	12

	GND

	Black

	J16

	‘DGND’

[image: TXIO LFRX signal connections]
[image: TXIO LRFX pwr connections]

	
	Install the TXIO board by screwing it into place on the USRP housing with the two provided holes. The TXIO board uses the same size and style of screw that the N200 motherboard and daughtercards do.
	
	Install the DSUB connector with the provided standoff screws. NOTE some models of DSUB will have split lock washers, but we’ve found that the thickness of the N200 case is too thick to use them. The DSUB standoff screws are notoriously easy to snap as well, so be careful.

	Install the 4x SMA female bulkhead cables at the back of the N200, when facing the rear of the N200 case the order from left to right is: J4, J5, J6, J7 (the same order as on the PCB, so no wires should cross each-other).

	Finally, connect the LFRX jumper wires from J1 and LED wires from J3 to complete the installation.

[image: TXIO rear view]

	Follow the testing procedure below to run a simple test of the TXIO outputs.

TXIO OUTPUT TESTS

	Connect a needle probe to channel one of your oscilloscope and set it to trigger on the rising edge of channel one.

	Run test_txio_gpio.py located in borealis/testing/n200_gpio_test. Usage is as follows:

python3 test_txio_gpio.py <N200_ip_address>

	When prompted to enter the pins corresponding to the TXIO signals, press enter to accept the default pin settings. This will begin the tests. Pressing CTRL+C and entering “y” will tell the program to run the next test.

	Insert the needle probe into the SMA output corresponding to RXO. The scope signal should be the inverse of the pattern flashed by the GREEN front LED. Then, proceed to the next test (CTRL+C, then enter “y”).

	Insert the needle probe into the SMA output corresponding to TXO. The scope signal should be the inverse of the pattern flashed by the RED and BLUE front LEDs. Then, proceed to the next test (CTRL+C, then enter “y”).

	Insert the needle probe into the SMA output corresponding to TR. The scope signal should be the inverse of the pattern flashed by the BLUE and GREEN front LEDs. Then, proceed to the next test (CTRL+C, then enter “y”).

	Insert the needle probe into the hole corresponding to pin 7 of the D-Sub connector (TR+). The scope signal should follow the pattern flashed by the BLUE and GREEN front LEDs.

	Insert the needle probe into the hole corresponding to pin 2 of the D-Sub connector (TR-). The scope signal should be the inverse of the pattern flashed by the BLUE and GREEN front LEDs.

	Insert the needle probe into SMA output corresponding to IDLE. The scope signal should be the inverse of the pattern flashed by the YELLOW front LED. Then, proceed to the next test (CTRL+C, then enter “y”).

	Insert the needle probe into the hole corresponding to pin 8 of the D-Sub. The scope signal should follow the sequence of numbers being printed to your terminal (high when the number is non-zero, low when the number is zero).

	Insert the needle probe into the hole corresponding to pin 3 of the D-Sub. The scope signal should be the inverse of the sequence of numbers being printed to your terminal. Then, proceed to the next test (CTRL+C, then enter “y”).

	To properly perform the loopback tests of the differential signals, connect the D-Sub pins to each other in the following configuration:

	Pin 6 to pin 7

	Pin 1 to pin 2

	Pin 8 to pin 9

	Pin 3 to pin 4

	Once connected ensure that during the TR, AGC loopback test, the hex digit is non zero when the terminal indicates the output pin is low, and vice versa. Then, proceed to the next test (CTRL+C, then enter “y”).

	Ensure that during the TM, LP loopback test, the hex digit is non zero when the terminal indicates the output pin is low, and vice versa. Press CTRL+C, then enter “y” to end the tests.

	This concludes the tests! If any of these signal output tests failed, additional troubleshooting is needed. To check the entire logic path of each signal, follow the testing procedures found in the TXIO notes document.

	Install enclosure cover lid back in place, ensuring that no wires are pinched.

Configuring the Unit for Borealis

	Use UHD utility usrp_burn_mb_eeprom to assign a unique IP address for the unit. Label the unit with the device IP address.

	The device should be configured and ready for use.

Pre-amps

For easy debugging, pre-amps are recommended to be installed inside existing SuperDARN transmitters where possible for SuperDARN main array channels. SuperDARN transmitters typically have a 15V supply and the low-noise amplifiers selected for pre-amplification (Mini-Circuits ZFL-500LN) operate at 15V, with max 60mA draw. The cable from the LPTR (low power transmit/receive) switch to the bulkhead on the transmitter can be replaced with a couple of cables to and from a filter and pre-amp.

Note that existing channel filters (typically custom 8-20MHz filters) should be placed ahead of the pre-amps in line to avoid amplifying noise.

It is also recommended to install all channels the same for all main array channels to avoid varying electrical path lengths in the array which will affect beamformed data.

Interferometer channels will need to be routed to a separate plate and supplied with 15V by a separate supply capable of supplying the required amperage for a minimum of 4 pre-amps.

Computer and Networking

To be able to run Borealis at high data rates, a powerful CPU with many cores and a high number of PCI lanes is needed. The team recommends an Intel i9 10 core CPU or better. Likewise a good NVIDIA GPU is needed for fast data processing. The team recommends a GeForce 1080TI/2080 or better. Just make sure the drivers are up to date on Linux for the model. A 10Gb(or multiple 1Gb interfaces) or better network interface is also required.

Not all networking equipment works well together or with USRP equipment. Some prototyping with different models may be required.

Once these components are selected, the supporting components such as motherboard, cooling and hard drives can all be selected. Assemble the computer following the instructions that come with the motherboard.

Software

SuperDARN Canada uses OpenSUSE for an operating system, but any Linux system that can support the NVIDIA drivers for the graphics card will work.
The current latest version of OpenSuSe (15.1) is known to work.

	Install the latest version of the NVIDIA drivers (see https://en.opensuse.org/SDB:NVIDIA_drivers). The driver must be able to support running the GPU selected and must also be compatible with the version of CUDA that supports the compute capability version of the GPU. Getting the OS to run stable with NVIDIA is the most important step. You may need to add your linux user account to the ‘video’ group after installation.

	Use the BIOS to find a stable over-clock for the CPU. Usually the recommended turbo frequency is a good place to start. This step is optional, but will help system performance when it comes to streaming high rates from the USRP. Do not adjust higher over-clock settings without doing research.

	Use the BIOS to enable boot-on-power. The computer should come back online when power is restored after an outage. This setting is typically referred to as Restore on AC/Power Loss

	Use cpupower to ungovern the CPU and run at the max frequency. This should be added to a script that occurs on reboot.

	cpupower frequency-set -g performance.

	To verify that the CPU is running at maximum frequency:

	cpupower frequency-info

	Use ethtool to set the interface ring buffer size for both rx and tx. This should be added to a script that occurs on reboot for the interface used to connect to the USRPs. This is done to help prevent packet loss when the network traffic exceeds the capacity of the network adapter.

	ethtool -G eth0 tx 4096 rx 4096.

	To see that this works as intended, and that it persists across reboots, you can execute the following, which will output the maximums and the current settings.

	ethtool -g eth0

	Use the network manager or a line in the reboot script to change the MTU of the interface for the interface used to connect to the USRPs. A larger MTU will reduce the amount of network overhead. An MTU larger than 1500 bytes allows what is known as Jumbo frames, which can use up to 9000 bytes of payload.

	ip link set eth0 mtu 9000

	To verify that the MTU was set correctly:

	ip link show eth0

	Use sysctl to adjust the kernel network buffer sizes. This should be added to a script that occurs on reboot for the interface used to connect to the USRPs.

	sysctl -w net.core.rmem_max=50000000

	sysctl -w net.core.wmem_max=2500000

	Verify that the kernel network buffer sizes are set:

	cat /proc/sys/net/core/rmem_max

	cat /proc/sys/net/core/wmem_max

	Install tuned. Use tuned-adm (as root) to set the system’s performance to network-latency.

	sudo zypper in tuned

	su

	systemctl enable tuned

	systemctl start tuned

	tuned-adm profile network-latency

	To verify the system’s new profile:

	tuned-adm profile_info

	Add an environment variable called BOREALISPATH that points to the cloned git repository in .bashrc or .profile and re-source the file. For example:

	export BOREALISPATH=/home/radar/borealis/

	source .profile

	Clone the Borealis software to a directory.

	git clone https://github.com/SuperDARNCanada/borealis.git

	If Usask, git submodule init && git submodule update. Create symlink config.ini in borealis directory and link to the site specific config file.

	cd ${BOREALISPATH} && ln -svi ${BOREALISPATH}/borealis_config_files/[radarcode]_config.ini config.ini

	If not Usask, use a Usask config.ini file as a template or the config file documentation to create your own file in the borealis directory.

	The Borealis software has a script called install_radar_deps_opensuse.sh to help install dependencies. This script has to be run by the root user. This script can be modified to use the package manager of a different distribution. Make sure that the version of CUDA is up to date and supports your card. This script makes an attempt to correctly install Boost and create symbolic links to the Boost libraries the UHD (USRP Hardware Driver) understands. If UHD does not configure correctly, an improper Boost installation or library naming convention is the likely reason.

	Set up NTP. The install_radar_deps_opensuse.sh script already downloads and configures a version of ntpd that works with incoming PPS signals on the serial port DCD line. An example configuration of ntp is shown below for /etc/ntp.conf. These settings use tick.usask.ca as a time server, and PPS (via the 127.127.22.0 lines). It also sets up logging daily for all stats types.

driftfile /var/log/ntp/ntp.drift

statsdir /var/log/ntp/ntpstats/
logfile /var/log/ntp/ntp_log
logconfig =all
statistics loopstats peerstats clockstats cryptostats protostats rawstats sysstats
filegen loopstats file loopstats type day enable
filegen peerstats file peerstats type day enable
filegen clockstats file clockstats type day enable
filegen cryptostats file cryptostats type day enable
filegen protostats file protostats type day enable
filegen rawstats file rawstats type day enable
filegen sysstats file sysstats type day enable

restrict -4 default kod notrap nomodify nopeer noquery limited
restrict -6 default kod notrap nomodify nopeer noquery limited

restrict 127.0.0.1
restrict ::1

restrict source notrap nomodify noquery

server tick.usask.ca prefer
server 127.127.22.0 minpoll 4 maxpoll 4
fudge 127.127.22.0 time1 0.2 flag2 1 flag3 0 flag4 1

keys /etc/ntp.keys
trustedkey 1
requestkey 1
controlkey 1

	As part of the realtime capabilities, the hdw.dat repo will be cloned to the computer(default will be /usr/local/hdw.dat). The hdw.dat files are also used for radar operation. Create a symbolic link for this radar in the $BOREALISPATH directory.

	ln -s /usr/local/hdw.dat/hdw.dat.[radarcode] $BOREALISPATH/hdw.dat.[radarcode]

	Edit /etc/security/limits.conf to add the following line that allows UHD to set thread priority. UHD automatically tries to boost its thread scheduling priority, so it will fail if the user executing UHD doesn’t have permission.

	@users - rtprio 99

	Assuming all dependencies are resolved, use scons to build the system. Use the script called mode to change the build environment to debug or release depending on what version of the system should be run. SCONSFLAGS variable can be added to .bashrc/.profile to hold any flags such as -j for parallel builds. For example, run the following:

	source mode [release|debug]

	If first time building, run scons -c to reset project state.

	scons to build

	Add the Python scheduling script, start_radar.sh, to the system boot scripts to allow the radar to follow the schedule.

	Finally, add the GPS disciplined NTP lines to the root start up script.

	/sbin/modprobe pps_ldisc && /usr/bin/ldattach 18 /dev/ttyS0 && /usr/local/bin/ntpd

	Verify that the PPS signal incoming on the DCD line of ttyS0 is properly routed and being received. You’ll get two lines every second corresponding to an ‘assert’ and a ‘clear’ on the PPS line along with the time in seconds since the epoch.

sudo ppstest /dev/pps0
[sudo] password for root:
trying PPS source "/dev/pps0"
found PPS source "/dev/pps0"
ok, found 1 source(s), now start fetching data...
source 0 - assert 1585755247.999730143, sequence: 200 - clear 1585755247.199734241, sequence: 249187
source 0 - assert 1585755247.999730143, sequence: 200 - clear 1585755248.199734605, sequence: 249188

	For further reading on networking and tuning with the USRP devices, see https://files.ettus.com/manual/page_transport.html and https://kb.ettus.com/USRP_Host_Performance_Tuning_Tips_and_Tricks. Also see http://doc.ntp.org/current-stable/drivers/driver22.html for information about the PPS ntp clock discipline, and the man pages for:

	tuned

	cpupower

	ethtool

	ip

	sysctl

	modprobe

	ldattach

Starting and Stopping the Radar

Manual Start-up

To more easily start the radar, there is a script called steamed_hams.sh. The name of this script is a goofy reference to a scene in an episode of The Simpsons in which Principal Skinner claims there is an aurora happening in his house. The script takes two arguments and can be invoked as follows:

	$BOREALISPATH/steamed_hams.sh experiment_name code_environment

An example invocation to run twofsound in release mode would be:

	/home/radar/borealis/steamed_hams.sh twofsound release

Another example invocation running normalscan in debug mode:

	/home/radar/borealis/steamed_hams.sh normalscan debug

The experiment name must match to an experiment in the experiment folder, and does not include the .py extension. The code environment is the type of compilation environment that was compiled using scons such as release, debug, etc. NOTE This script will kill the Borealis software if it is currently running, before it starts it anew.

The script will boot all the radar processes in a detached screen window that runs in the background. This window can be reattached in any terminal window locally or over ssh (screen -r) to track any outputs if needed.

If starting the radar in normal operation according to the schedule, there is a helper script called start_radar.sh.

Automated Start-up

In order to start the radar automatically, the script start_radar.sh should be added to a startup script of the Borealis computer. It can also be called manually by the non-root user (typically radar).
The scheduling Python script, remote_server.py, is responsible for automating the control of the radar to follow the schedule, and is started via the start_radar.sh script with the appropriate arguments

#!/bin/bash

/usr/bin/pkill -9 -f remote_server.py
source $HOME/.profile

NOW=`date +'%Y%m%d %H:%M:%S'`

/usr/bin/nohup /usr/bin/python3 $BOREALISPATH/scheduler/remote_server.py --scd-dir=/home/radar/borealis_schedules --emails-filepath=/home/radar/borealis_schedules/emails.txt >/home/radar/logs/scd.out 2>&1 &

retVal=$?
if [[$retVal -ne 0]]; then
	echo "${NOW} START: Could not start radar." | tee -a /data/borealis_logs/start_stop.log
else
	echo "${NOW} START: Radar processes started." | tee -a /data/borealis_logs/start_stop.log
fi

This script should be added to the control computer boot-up scripts so that it generates a new set of scheduled commands.

Stopping the Radar

There are several ways to stop the Borealis radar. They are ranked here from most acceptable to last-resort:

	Run the script stop_radar.sh from the Borealis project directory. This script kills the scheduling server, removes all entries from the schedule and kills the screen session running the Borealis software modules.

	While viewing the screen session running the Borealis software modules, type ctrl-A, ctrl-\. This will kill the screen session and all software modules running within it.

	Restart the Borealis computer. NOTE In a normal circumstance, the Borealis software will start back up again once the computer reboots.

	Shut down the Borealis computer.

Scheduling

Borealis scheduling is made of several components to help automate and reduce overhead in scheduling. The idea here is to have a script that runs locally at the institution which generates new schedules, a cloud syncing service to automatically upload the new schedules to the radar sites, and then a remote script on site that converts the schedules to actual radar commands.

The local script will monitor the Scheduling Working Group (SWG) web link for new uploads and then grab them if there is anything new. At the time of writing, these files are hosted at https://github.com/SuperDARN/schedules. This automated script will then parse the lines from the file and convert them to schedule file (SCD) commands.

The schedule files need to be synced to the radar sites. It is recommended to set up a directory which is cloud shared using a service such as Nextcloud or Owncloud. The SCD files that the local script adds to should all be in this directory so that syncing is all automated.

The remote script will check for changes to any synced files and then generate at command arguments for Borealis experiments to run. This allows us to utilize scheduling utilities already available in Linux.

These scripts are configured with logging and email capability so that maintainers can track if scheduling is successful. There is also a utility script called schedule_modifier.py that should be used to add or remove lines from the schedule so that no errors are made in the schedule file. It is not recommended to manually modify any schedule files.

Here is a simple diagram for how scheduling works. It starts with the DSWG repository, which is accessed via a local server, which then uses unison to sync with all Borealis radars.

[image: Simple block diagram of scheduling setup]
Here are the steps to configure scheduling:

	Configure a local institution server to build schedules.

	Configure a cloud/network syncing service such as unison or NFS. Configure this service to share a directory where schedules and logs are to be stored.

	Git clone a copy of Borealis.

	Edit the local_scd_server.py with the correct experiments and radars belonging to your institution.

	Configure a system service or reboot cron task to run the python3 script local_scd_server.py at boot. This script requires the argument –scd-dir for the schedules directory as well as –emails-filepath which should be a text file of emails on each line where scheduling status will be sent.

	The local_scd_server.py script has an option for running manually the first time to properly configure the scheduling directory with the schedules for the latest files available.

	Example: python3 ./local_scd_server.py –first-run –scd-dir=/data/borealis_schedules –emails-filepath=/data/borealis_schedules/emails.txt

	Configure the Borealis computer.

	unison will execute on the remote and connect to this machine to sync.

	Schedule a reboot task via cron to run the start_radar.sh helper script in order to run the radar according the radar schedule.

	Enable and start atq service.

Building an Experiment

Borealis has an extensive set of features and this means that experiments can be designed to be very simple or very complex. To help organize writing of experiments, we’ve designed the system so that experiments can be broken into smaller components, called slices, that interface together with other components to perform desired functionality. An experiment can have a single slice or several working together, depending on the complexity.

Each slice contains the information needed about a specific pulse sequence to run. The parameters of a slice contain features such as pulse sequence, frequency, fundamental time lag spacing, etc. These are the parameters that researchers will be familiar with. Each slice can be an experiment on its
own, or can be just a piece of a larger experiment.

Introduction to Borealis Slices

Slices are software objects made for the Borealis system that allow easy integration of
multiple modes into a single experiment. Each slice could be an experiment on its own, and
averaged products are produced from each slice individually. Slices can be used to create
separate frequency channels, separate pulse sequences, separate beam scanning order,
etc. that can run simultaneously. Slices can be interfaced in four different ways.

The following parameters are unique to a slice:

	tx or rx frequency

	pulse sequence

	tau spacing (mpinc)

	pulse length

	number of range gates

	first range gate

	beam directions

	beam order

A slice is defined using a dictionary and the necessary slice keys. For a complete
list of keys that can be used in a slice, see below ‘Slice Keys’.

The other necessary part of an experiment is specifying how slices will interface with each other. Interfacing in this case refers to how these two components are meant to be run. To understand the interfacing, lets first understand the basic building blocks of a SuperDARN experiment. These are:

Sequence (integration)

Made up of pulses with a specified spacing, at a specified frequency, and with a specified receive time
following the transmission (to gather information from the number of ranges specified). Researchers might
be familiar with a common SuperDARN 7 or 8 pulse sequence design. The sequence definition here is the time to
transmit one sequence and the time for receiving echoes from that sequence.

Averaging period (integration time)

A time where the sequences are repeated to gather enough information to average and reduce the effect of
spurious emissions on the data. These are defined by either number of sequences, or a length of time during
which as many sequences as possible are transmitted. For example, researchers may be familiar with the standard
3 second averaging period in which ~30 pulse sequences are sent out and received in a single beam direction.

Scan

A time where the averaging periods are repeated, traditionally to look in different beam
directions with each averaging period. A scan is defined by the number of beams or integration times.

Interfacing Types Between Slices

Knowing the basic building blocks of a SuperDARN-style experiment, the following types of interfacing are possible, arranged
from highest level to lowest level:

	SCAN

The scan by scan interfacing allows for slices to run a scan of one slice, followed by a scan of the second. The scan mode of interfacing typically means that the slice will cycle through all of its beams before switching to another slice.

There are no requirements for slices interfaced in this manner.

	INTTIME

This type of interfacing allows for one slice to run its integration period (also known as integration time or averaging period), before switching to another slice’s integration period. This type of interface effectively creates an interleaving scan where the scans for multiple slices are run ‘at the same time’, by interleaving the integration times.

	Slices which are interfaced in this manner must share:
	
	the same SCANBOUND value.

	INTEGRATION

Integration interfacing allows for pulse sequences defined in the slices to alternate between each other within a single integration period. It’s important to note that data from a single slice is averaged only with other data from that slice. So in this case, the integration period is running two slices and can produce two averaged datasets, but the sequences (integrations) within the integration period are interleaved.

	Slices which are interfaced in this manner must share:
	
	the same SCANBOUND value.

	the same INTT or INTN value.

	the same BEAM_ORDER length (scan length)

	PULSE

Pulse interfacing allows for pulse sequences to be run together concurrently. Slices will have their pulse sequences layered together so that the data transmits at the same time. For example, slices of different frequencies can be mixed simultaneously, and slices of different pulse sequences can also run together at the cost of having more blanked samples. When slices are interfaced in this way the radar is truly transmitting and receiving the slices simultaneously.

	Slices which are interfaced in this manner must share:
	
	the same SCANBOUND value.

	the same INTT or INTN value.

	the same BEAM_ORDER length (scan length)

Slice Interfacing Examples

Let’s look at some examples of common experiments that can easily be separated into multiple slices.

In a CUTLASS-style experiment, the pulse in the sequence is actually two pulses of differing transmit frequency. This is a ‘quasi’-simultaneous multi-frequency experiment where the frequency changes in the middle of the pulse. To build this experiment, two slices can be PULSE interfaced. The pulses from both slices are combined into a single set of transmitted samples for that sequence and samples received from those sequences are used for both slices (filtering the raw data separates the frequencies).

[image: CUTLASS-style experiment slice interfacing]
In a themisscan experiment, a single beam is interleaved with a full scan. The beam_order can be unique to different slices, and these slices could be INTTIME interfaced to separate the camping beam data from the full scan,
if desired. With INTTIME interfacing, one averaging period of one slice will be followed by an averaging period of another, and so on. The averaging periods are interleaved. The resulting experiment runs beams 0, 7, 1, 7, etc.

[image: THEMISSCAN slice interfacing]
In a twofsound experiment, a full scan of one frequency is followed by a full scan of another frequency. The txfreq are unique between the slices. In this experiment, the slices are SCAN interfaced. A full scan of slice 0 runs
followed by a full scan of slice 1, and then the process repeats.

[image: TWOFSOUND slice interfacing]
Here’s a theoretical example showing all types of interfacing. In this example, slices 0 and 1 are PULSE interfaced. Slices 0 and 2 are INTEGRATION interfaced. Slices 0 and 3 are INTTIME interfaced. Slices 0 and 4 are SCAN interfaced.

[image: An example showing all types of slice interfacing]

Writing an Experiment

All experiments must be written as their own class and must be built off of the built-in ExperimentPrototype class.

This means the ExperimentPrototype class must be imported at the start of the experiment file:

from experiments.experiment_prototype import ExperimentPrototype

Experiment-Wide Attributes

	cpid required
	The only experiment-wide attribute that is required to be set by the user
when initializing is the CPID, or control program identifier. This should
be unique to the experiment. You will need to request this from your
institution’s radar operator. You should clearly document the name of the
experiment and some operating details that correspond to the CPID.

	output_rx_rate defaults
	The sampling rate of the output data. The default is 10.0e3/3 Hz, or 3.333 kHz.

	rx_bandwidth defaults
	The sampling rate of the USRPs (before decimation). The default is 5.0e6 Hz,
or 5 MHz.

	tx_bandwidth defaults
	The output sampling rate of the transmitted signal. The default is 5.0e6 Hz,
or 5 MHz.

	txctrfreq defaults
	The center frequency of the transmit chain. The default is 12000.0 kHz, or
12 MHz. Note that this is tuned so will be set to a quantized value, which
in general is not exactly 12 MHz, and the value can be accessed by the user
at this attribute after the experiment begins.

	rxctrfreq defaults
	The center frequency of the receive chain. The default is 12000.0 kHz, or
12 MHz. Note that this is tuned so will be set to a quantized value, which
in general is not exactly 12 MHz, and the value can be accessed by the user
at this attribute after the experiment begins.

	decimation_scheme defaults
	The decimation scheme for the experiment, provided by an instance of the
class DecimationScheme. There is a default scheme specifically set for the
default rates and center frequencies above.

	comment_string defaults
	A comment string describing the experiment. It is highly encouraged to
provide some description of the experiment for the output data files. The
default is ‘’, or an empty string.

Below is an example of properly inheriting the prototype class and defining your own experiment:

class MyClass(ExperimentPrototype):

 def __init__(self):
 cpid = 123123 # this must be a unique id for your control program.
 super(MyClass, self).__init__(cpid,
 comment_string='My experiment explanation')

The experiment handler will create an instance of your experiment when your experiment is scheduled to start running. Your class is a child class of ExperimentPrototype and because of this, the parent class needs to be instantiated when the experiment is instantiated. This is important because the experiment_handler will build the scans required by your class in a way that is easily readable and iterable by the radar control program. This is done by methods that are set up in the ExperimentPrototype parent class.

The next step is to add slices to your experiment. An experiment is defined by the slices in the class, and how the slices interface. As mentioned above, slices are just dictionaries, with a preset list of keys available to define your experiment. The keys that can be used in the slice dictionary are described below.

Slice Keys

These are the keys that are set by the user when initializing a slice. Some
are required, some can be defaulted, and some are set by the experiment
and are read-only.

Slice Keys Required by the User

	pulse_sequence required
	The pulse sequence timing, given in quantities of tau_spacing, for example
normalscan = [0, 14, 22, 24, 27, 31, 42, 43].

	tau_spacing required
	multi-pulse increment in us, Defines minimum space between pulses.

	pulse_len required
	length of pulse in us. Range gate size is also determined by this.

	num_ranges required
	Number of range gates.

	first_range required
	distance to the first range gate, in km

	intt required or intn required
	duration of an integration, in ms. (maximum)

	intn required or intt required
	number of averages to make a single integration, only used if intt = None.

	beam_angle required
	list of beam directions, in degrees off azimuth. Positive is E of N. The beam_angle list
length = number of beams. Traditionally beams have been 3.24 degrees separated but we
don’t refer to them as beam -19.64 degrees, we refer as beam 1, beam 2. Beam 0 will
be the 0th element in the list, beam 1 will be the 1st, etc. These beam numbers are
needed to write the beam_order list. This is like a mapping of beam number (list
index) to beam direction off boresight. Typically you can use the radar’s common
beam angle list. For example, at Saskatoon site the beam angles are a standard
16-beam list: [-26.25, -22.75, -19.25, -15.75, -12.25, -8.75,

-5.25, -1.75, 1.75, 5.25, 8.75, 12.25, 15.75, 19.25, 22.75,
26.25]

	beam_order required
	beam numbers written in order of preference, one element in this list corresponds to
one integration period. Can have lists within the list, resulting in multiple beams
running simultaneously in the averaging period, so imaging. A beam number of 0 in
this list gives us the direction of the 0th element in the beam_angle list. It is
up to the writer to ensure their beam pattern makes sense. Typically beam_order is
just in order (scanning W to E or E to W, ie. [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15]. You can list numbers multiple times in the beam_order list,
for example [0, 1, 1, 2, 1] or use multiple beam numbers in a single
integration time (example [[0, 1], [3, 4]], which would trigger an imaging
integration. When we do imaging we will still have to quantize the directions we
are looking in to certain beam directions.

	clrfrqrange required or txfreq or rxfreq required
	range for clear frequency search, should be a list of length = 2, [min_freq, max_freq]
in kHz. Not currently supported.

	txfreq required or clrfrqrange or rxfreq required
	transmit frequency, in kHz. Note if you specify clrfrqrange it won’t be used.

	rxfreq required or clrfrqrange or txfreq required
	receive frequency, in kHz. Note if you specify clrfrqrange or txfreq it won’t be used. Only
necessary to specify if you want a receive-only slice.

Defaultable Slice Keys

	acf defaults
	flag for rawacf and generation. The default is False. If True, the following fields are
also used:
- averaging_method (default ‘mean’)
- xcf (default True if acf is True)
- acfint (default True if acf is True)
- lagtable (default built based on all possible pulse combos)

	acfint defaults
	flag for interferometer autocorrelation data. The default is True if acf is True, otherwise
False.

	averaging_method defaults
	a string defining the type of averaging to be done. Current methods are ‘mean’ or ‘median’.
The default is ‘mean’.

	comment defaults
	a comment string that will be placed in the borealis files describing the slice. Defaults
to empty string.

	lag_table defaults
	used in acf calculations. It is a list of lags. Example of a lag: [24, 27] from
8-pulse normalscan. This defaults to a lagtable built by the pulse sequence
provided. All combinations of pulses will be calculated, with both the first pulses
and last pulses used for lag-0.

	pulse_phase_offset defaults
	Allows phase shifting between pulses, enabling encoding of pulses. Default all
zeros for all pulses in pulse_sequence.

	range_sep defaults
	a calculated value from pulse_len. If already set, it will be overwritten to be the correct
value determined by the pulse_len. This is the range gate separation,
in azimuthal direction, in km.

	rx_int_antennas defaults
	The antennas to receive on in interferometer array, default is all
antennas given max number from config.

	rx_main_antennas defaults
	The antennas to receive on in main array, default is all antennas
given max number from config.

	scanbound defaults
	A list of seconds past the minute for integration times in a scan to align to. Defaults
to None, not required. If you set this, you will want to ensure that there is a slightly
larger amount of time in the scan boundaries than the integration time set for the slice.
For example, if you want to align integration times at the 3n second marks, you may want to
have a set integration time of ~2.9s to ensure that the experiment will start on time.
Typically 50ms difference will be enough. This is especially important for the last integration
time in the scan, as the experiment will always wait for the next scan start boundary
(potentially causing a minute of downtime). You could also just leave a small amount
of downtime at the end of the scan.

	seqoffset defaults
	offset in us that this slice’s sequence will begin at, after the start of the sequence.
This is intended for PULSE interfacing, when you want multiple slice’s pulses in one sequence
you can offset one slice’s sequence from the other by a certain time value so as to not run both
frequencies in the same pulse, etc. Default is 0 offset.

	tx_antennas defaults
	The antennas to transmit on, default is all main antennas given max
number from config.

	xcf defaults
	flag for cross-correlation data. The default is True if acf is True, otherwise False.

Read-only Slice Keys

	clrfrqflag read-only
	A boolean flag to indicate that a clear frequency search will be done.
Not currently supported.

	cpid read-only
	The ID of the experiment, consistent with existing radar control programs.
This is actually an experiment-wide attribute but is stored within the
slice as well. This is provided by the user but not within the slice,
instead when the experiment is initialized.

	rx_only read-only
	A boolean flag to indicate that the slice doesn’t transmit, only receives.

	slice_id read-only
	The ID of this slice object. An experiment can have multiple slices. This
is not set by the user but instead set by the experiment automatically when the
slice is added. Each slice id within an experiment is unique. When experiments
start, the first slice_id will be 0 and incremented from there.

	slice_interfacing read-only
	A dictionary of slice_id : interface_type for each sibling slice in the
experiment at any given time.

Not currently supported and will be removed

	wavetype defaults
	string for wavetype. The default is SINE. Not currently supported.

	iwavetable defaults
	a list of numeric values to sample from. The default is None. Not currently supported
but could be set up (with caution) for non-SINE. Not currently supported.

	qwavetable defaults
	a list of numeric values to sample from. The default is None. Not currently supported
but could be set up (with caution) for non-SINE. Not currently supported.

Experiment Example

An example of adding a slice to your experiment is as follows:

self.add_slice({ # slice_id will be 0, there is only one slice.
 "pulse_sequence": [0, 9, 12, 20, 22, 26, 27],
 "tau_spacing": tau_spacing, # us
 "pulse_len": 300, # us
 "num_ranges": 75, # range gates
 "first_range": 180, # first range gate, in km
 "intt": 3500, # duration of an integration, in ms
 "beam_angle": [-26.25, -22.75, -19.25, -15.75, -12.25, -8.75,
 -5.25, -1.75, 1.75, 5.25, 8.75, 12.25, 15.75, 19.25, 22.75,
 26.25],
 "beam_order": [15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0],
 "scanbound": [i * 3.5 for i in range(len(beams_to_use))], #1 min scan
 "txfreq" : 10500, #kHz
 "acf": True,
 "xcf": True, # cross-correlation processing
 "acfint": True, # interferometer acfs
})

self.add_slice(slice_1)

This slice would be assigned with slice_id = 0 if it’s the first slice added to the experiment. The experiment could also add another slice:

slice_2 = copy.deepcopy(slice_1)
slice_2['txfreq'] = 13200 #kHz
slice_2['comment'] = 'This is my second slice.'

self.add_slice(slice_2, interfacing_dict={0: 'SCAN'})

Notice that you must specify interfacing to an existing slice when you add a second or greater order slice to the experiment. To see the types
of interfacing that can be used, see above section ‘Interfacing Types Between Slices’.

This experiment is very similar to the twofsound experiment. To see examples of common experiments, look at experiments package.

Config Parameters

	Config field

	Example entry

	Description

	site_id

	sas

	3-letter standard ID of the radar

	gps_octoclock_addr

	addr=192.168.10.131

	IP address of the GPS Octoclock

	devices

	recv_frame_size=4000,
addr0=192.168.10.100,
addr1=192.168.10.101,
addr2=192.168.10.102,
addr3=192.168.10.103,
addr4=192.168.10.104,
addr5=192.168.10.105,
addr6=192.168.10.106,
addr7=192.168.10.107,
addr8=192.168.10.108,
addr9=192.168.10.109,
addr10=192.168.10.110,
addr11=192.168.10.111,
addr12=192.168.10.112,
addr13=192.168.10.113,
addr14=192.168.10.114,
addr15=192.168.10.115

	UHD USRP device arguments.

	main_antenna_count

	16

	Number of main array antennas (TX/RX)

	interferometer_antenna_count

	4

	Number of interferometer antennas

	main_antenna_usrp_rx_channels

	0,2,4,6,8,10,12,14,16,
18,20,22,24,26,28,30

	UHD channel designation for RX main
antennas

	interferometer_antenna_usrp_rx_channels

	1,3,5,7

	UHD channel designation for RX intf
antennas.

	main_antenna_usrp_tx_channels

	0,1,2,3,4,5,6,7,8,9,
10,11,12,13,14,15

	UHD channel designation for TX main
antennas.

	main_antenna_spacing

	15.24

	Distance between antennas (m).

	interferometer_antenna_spacing

	15.24

	Distance between antennas (m).

	min_freq

	8.00E+06

	Minimum frequency we can run (Hz).

	max_freq

	20.00E+06

	Maximum frequency we can run (Hz).

	minimum_pulse_length

	100

	Minimum pulse length (us) dependent
upon AGC feedback sample and hold.

	minimum_mpinc_length

	1

	Minimum length of multi-pulse
increment (us).

	minimum_pulse_separation

	125

	The minimum separation (us) before
experiment treats it as a single
pulse (transmitting zeroes and not
receiving between the pulses. 125 us
is approx two TX/RX times.

	tx_subdev

	A:A

	UHD daughterboard string which
defines how to configure ports. Refer
to UHD subdev docs.

	max_tx_sample_rate

	5.00E+06

	Maximum wideband TX rate each device
can run in the system.

	main_rx_subdev

	A:A A:B

	UHD daughterboard string which
defines how to configure ports. Refer
to UHD subdev docs.

	interferometer_rx_subdev

	A:A A:B

	UHD daughterboard string which
defines how to configure ports. Refer
to UHD subdev docs.

	max_rx_sample_rate

	5.00E+06

	Maximum wideband RX rate each
device can run in the system.

	pps

	external

	The PPS source for the system
(internal, external, none).

	ref

	external

	The 10 MHz reference source
(internal, external).

	overthewire

	sc16

	Data type for samples the USRP
operates with. Refer to UHD docs for
data types.

	cpu

	fc32

	Data type of samples that UHD uses
on host CPU. Refer to UHD docs for
data types.

	gpio_bank

	RXA

	The daughterboard pin bank to use for
TR and I/O signals.

	atr_rx

	0x0006

	The pin mask for the RX only mode.

	atr_tx

	0x0018

	The pin mask for the TX only mode.

	atr_xx

	0x0060

	The pin mask for the full duplex
mode (TR).

	atr_0x

	0x0180

	The pin mask for the idle mode.

	tst_md

	0x0600

	The pin mask for test mode.

	lo_pwr

	0x1800

	The pin mask for the low power signal

	agc_st

	0x6000

	The pin mask for the AGC signal.

	max_usrp_dac_amplitude

	0.99

	The amplitude of highest allowed USRP
TX sample (V).

	pulse_ramp_time

	1.00E-05

	The linear ramp time for the
pulse (s)

	tr_window_time

	6.00E-05

	How much windowing on either side of
pulse is needed for TR signal (s).

	agc_signal_read_delay

	0

	Hardware dependent delay time for
reading of AGC and low power signals

	usrp_master_clock_rate

	1.00E+08

	Clock rate of the USRP master
clock (Sps).

	max_output_sample_rate

	1.00E+05

	Maximum rate allowed after
downsampling (Sps)

	max_number_of_filter_taps_per_stage

	2048

	The maximum total number of filter
taps for all frequencies combined.
This is a GPU limitation.

	router_address

	tcp://127.0.0.1:6969

	The protocol/IP/port used for the ZMQ
router in Brian.

	radctrl_to_exphan_identity

	RADCTRL_EXPHAN_IDEN

	ZMQ named socket identity.

	radctrl_to_dsp_identity

	RADCTRL_DSP_IDEN

	ZMQ named socket identity.

	radctrl_to_driver_identity

	RADCTRL_DRIVER_IDEN

	ZMQ named socket identity.

	radctrl_to_brian_identity

	RADCTRL_BRIAN_IDEN

	ZMQ named socket identity.

	radctrl_to_dw_identity

	RADCTRL_DW_IDEN

	ZMQ named socket identity.

	driver_to_radctrl_identity

	DRIVER_RADCTRL_IDEN

	ZMQ named socket identity.

	driver_to_dsp_identity

	DRIVER_DSP_IDEN

	ZMQ named socket identity.

	driver_to_brian_identity

	DRIVER_BRIAN_IDEN

	ZMQ named socket identity.

	exphan_to_radctrl_identity

	EXPHAN_RADCTRL_IDEN

	ZMQ named socket identity.

	exphan_to_dsp_identity

	EXPHAN_DSP_IDEN

	ZMQ named socket identity.

	dsp_to_radctrl_identity

	DSP_RADCTRL_IDEN

	ZMQ named socket identity.

	dsp_to_driver_identity

	DSP_DRIVER_IDEN

	ZMQ named socket identity.

	dsp_to_exphan_identity

	DSP_EXPHAN_IDEN

	ZMQ named socket identity.

	dsp_to_dw_identity

	DSP_DW_IDEN

	ZMQ named socket identity.

	dspbegin_to_brian_identity

	DSPBEGIN_BRIAN_IDEN

	ZMQ named socket identity.

	dspend_to_brian_identity

	DSPEND_BRIAN_IDEN

	ZMQ named socket identity.

	dw_to_dsp_identity

	DW_DSP_IDEN

	ZMQ named socket identity.

	dw_to_radctrl_identity

	DW_RADCTRL_IDEN

	ZMQ named socket identity.

	brian_to_radctrl_identity

	BRIAN_RADCTRL_IDEN

	ZMQ named socket identity.

	brian_to_driver_identity

	BRIAN_DRIVER_IDEN

	ZMQ named socket identity.

	brian_to_dspbegin_identity

	BRIAN_DSPBEGIN_IDEN

	ZMQ named socket identity.

	brian_to_dspend_identity

	BRIAN_DSPEND_IDEN

	ZMQ named socket identity.

	ringbuffer_name

	data_ringbuffer

	Shared memory name for ringbuffer.

	ringbuffer_size_bytes

	200.00E+06

	Size in bytes to allocate for each
ringbuffer.

	data_directory

	/data/borealis_data

	Location of output data files.

Borealis Processes

Runtime Processes

	experiment_handler package
	experiment_handler process

	experiment_handler()

	experiment_parser()

	printing()

	retrieve_experiment()

	send_experiment()

	usage_msg()

	Usage

	radar_control package

	Brian

	Rx Signal Processing
	Another representation of Frerking’s method

	File dsp.cu

	File dsp.hpp

	File decimate.cu

	File decimate.hpp

	File filtering.hpp

	USRP N200 Driver
	Transmit Thread

	Receive Thread
	File usrp_driver.cpp

	File usrp.hpp

	data_write package
	Submodules
	experiment_prototype

	ExperimentPrototype
	ExperimentPrototype.acf

	ExperimentPrototype.acfint

	ExperimentPrototype.add_slice()

	ExperimentPrototype.build_scans()

	ExperimentPrototype.check_new_slice_interfacing()

	ExperimentPrototype.check_slice()

	ExperimentPrototype.check_slice_minimum_requirements()

	ExperimentPrototype.check_slice_specific_requirements()

	ExperimentPrototype.comment_string

	ExperimentPrototype.cpid

	ExperimentPrototype.decimation_scheme

	ExperimentPrototype.del_slice()

	ExperimentPrototype.edit_slice()

	ExperimentPrototype.experiment_name

	ExperimentPrototype.get_scan_slice_ids()

	ExperimentPrototype.get_slice_interfacing()

	ExperimentPrototype.interface

	ExperimentPrototype.new_slice_id

	ExperimentPrototype.num_slices

	ExperimentPrototype.options

	ExperimentPrototype.output_rx_rate

	ExperimentPrototype.printing()

	ExperimentPrototype.rx_bandwidth

	ExperimentPrototype.rx_maxfreq

	ExperimentPrototype.rx_minfreq

	ExperimentPrototype.rxctrfreq

	ExperimentPrototype.rxrate

	ExperimentPrototype.scan_objects

	ExperimentPrototype.scheduling_mode

	ExperimentPrototype.self_check()

	ExperimentPrototype.set_slice_defaults()

	ExperimentPrototype.set_slice_identifiers()

	ExperimentPrototype.setup_slice()

	ExperimentPrototype.slice_beam_directions_mapping()

	ExperimentPrototype.slice_dict

	ExperimentPrototype.slice_ids

	ExperimentPrototype.slice_keys

	ExperimentPrototype.transmit_metadata

	ExperimentPrototype.tx_bandwidth

	ExperimentPrototype.tx_maxfreq

	ExperimentPrototype.tx_minfreq

	ExperimentPrototype.txctrfreq

	ExperimentPrototype.txrate

	ExperimentPrototype.xcf

	hidden_key_set

	interface_types

	slice_key_set

	experiment_exception

	ExperimentException

	list_tests

	has_duplicates()

	is_increasing()

	Subpackages
	experiment_prototype.scan_classes package
	scan_class_base

	ScanClassBase

	scans

	Scan

	averaging_periods

	AveragingPeriod

	sequences

	Sequence

Experiment Components

	experiment_prototype package
	Submodules
	experiment_prototype

	ExperimentPrototype
	ExperimentPrototype.acf

	ExperimentPrototype.acfint

	ExperimentPrototype.add_slice()

	ExperimentPrototype.build_scans()

	ExperimentPrototype.check_new_slice_interfacing()

	ExperimentPrototype.check_slice()

	ExperimentPrototype.check_slice_minimum_requirements()

	ExperimentPrototype.check_slice_specific_requirements()

	ExperimentPrototype.comment_string

	ExperimentPrototype.cpid

	ExperimentPrototype.decimation_scheme

	ExperimentPrototype.del_slice()

	ExperimentPrototype.edit_slice()

	ExperimentPrototype.experiment_name

	ExperimentPrototype.get_scan_slice_ids()

	ExperimentPrototype.get_slice_interfacing()

	ExperimentPrototype.interface

	ExperimentPrototype.new_slice_id

	ExperimentPrototype.num_slices

	ExperimentPrototype.options

	ExperimentPrototype.output_rx_rate

	ExperimentPrototype.printing()

	ExperimentPrototype.rx_bandwidth

	ExperimentPrototype.rx_maxfreq

	ExperimentPrototype.rx_minfreq

	ExperimentPrototype.rxctrfreq

	ExperimentPrototype.rxrate

	ExperimentPrototype.scan_objects

	ExperimentPrototype.scheduling_mode

	ExperimentPrototype.self_check()

	ExperimentPrototype.set_slice_defaults()

	ExperimentPrototype.set_slice_identifiers()

	ExperimentPrototype.setup_slice()

	ExperimentPrototype.slice_beam_directions_mapping()

	ExperimentPrototype.slice_dict

	ExperimentPrototype.slice_ids

	ExperimentPrototype.slice_keys

	ExperimentPrototype.transmit_metadata

	ExperimentPrototype.tx_bandwidth

	ExperimentPrototype.tx_maxfreq

	ExperimentPrototype.tx_minfreq

	ExperimentPrototype.txctrfreq

	ExperimentPrototype.txrate

	ExperimentPrototype.xcf

	hidden_key_set

	interface_types

	slice_key_set

	experiment_exception

	ExperimentException

	list_tests

	has_duplicates()

	is_increasing()

	Subpackages
	experiment_prototype.scan_classes package
	scan_class_base

	ScanClassBase

	scans

	Scan

	averaging_periods

	AveragingPeriod

	sequences

	Sequence

	experiments package
	experiments.normalscan module

	experiments.twofsound module

Utils

	radar_status package
	radar_status.radar_status module
	RadarStatus

	errortype()

	statustype()

	sample_building package
	sample_building.sample_building module
	calculate_first_rx_sample_time()

	calculated_combined_pulse_samples_length()

	create_debug_sequence_samples()

	create_uncombined_pulses()

	get_phshift()

	get_samples()

	get_wavetables()

	make_pulse_samples()

	resolve_imaging_directions()

	rx_azimuth_to_antenna_offset()

	shift_samples()

	utils package
	utils.experiment_options.experimentoptions module
	ExperimentOptions
	ExperimentOptions.altitude

	ExperimentOptions.analog_atten_stages

	ExperimentOptions.analog_rx_attenuator

	ExperimentOptions.analog_rx_rise

	ExperimentOptions.beam_sep

	ExperimentOptions.boresight

	ExperimentOptions.brian_to_driver_identity

	ExperimentOptions.brian_to_dspbegin_identity

	ExperimentOptions.brian_to_dspend_identity

	ExperimentOptions.brian_to_radctrl_identity

	ExperimentOptions.default_freq

	ExperimentOptions.driver_to_brian_identity

	ExperimentOptions.driver_to_dsp_identity

	ExperimentOptions.driver_to_radctrl_identity

	ExperimentOptions.dsp_to_driver_identity

	ExperimentOptions.dsp_to_dw_identity

	ExperimentOptions.dsp_to_exphan_identity

	ExperimentOptions.dsp_to_radctrl_identity

	ExperimentOptions.dspbegin_to_brian_identity

	ExperimentOptions.dspend_to_brian_identity

	ExperimentOptions.dw_to_dsp_identity

	ExperimentOptions.dw_to_radctrl_identity

	ExperimentOptions.exphan_to_dsp_identity

	ExperimentOptions.exphan_to_radctrl_identity

	ExperimentOptions.geo_lat

	ExperimentOptions.geo_long

	ExperimentOptions.interferometer_antenna_count

	ExperimentOptions.interferometer_antenna_spacing

	ExperimentOptions.intf_offset

	ExperimentOptions.main_antenna_count

	ExperimentOptions.main_antenna_spacing

	ExperimentOptions.max_beams

	ExperimentOptions.max_freq

	ExperimentOptions.max_number_of_filter_taps_per_stage

	ExperimentOptions.max_number_of_filtering_stages

	ExperimentOptions.max_output_sample_rate

	ExperimentOptions.max_range_gates

	ExperimentOptions.max_rx_sample_rate

	ExperimentOptions.max_tx_sample_rate

	ExperimentOptions.max_usrp_dac_amplitude

	ExperimentOptions.min_freq

	ExperimentOptions.minimum_pulse_length

	ExperimentOptions.minimum_pulse_separation

	ExperimentOptions.minimum_tau_spacing_length

	ExperimentOptions.phase_sign

	ExperimentOptions.pulse_ramp_time

	ExperimentOptions.radctrl_to_brian_identity

	ExperimentOptions.radctrl_to_driver_identity

	ExperimentOptions.radctrl_to_dsp_identity

	ExperimentOptions.radctrl_to_dw_identity

	ExperimentOptions.radctrl_to_exphan_identity

	ExperimentOptions.restricted_ranges

	ExperimentOptions.router_address

	ExperimentOptions.site_id

	ExperimentOptions.tdiff

	ExperimentOptions.tr_window_time

	ExperimentOptions.usrp_master_clock_rate

	ExperimentOptions.velocity_sign

	Config Parameters

experiment_handler package

The experiment_handler package contains a single module, experiment_handler, that is a
standalone program.

experiment_handler process

This program runs a given experiment. It will use the experiment’s build_scans method to
create the iterable ScanClassBase objects that will be used by the radar_control block,
then it will pass the experiment to the radar_control block to run.

It will be passed some data to use in its update method at the end of every integration time.
This has yet to be implemented but will allow experiment_prototype to modify itself
based on received data as feedback.

	copyright

	2018 SuperDARN Canada

	author

	Marci Detwiller

	
experiment_handler.experiment_handler.experiment_handler(semaphore)

	Run the experiment. This is the main process when this program is called.

This process runs the experiment from the module that was passed in as an argument. It
currently does not exit unless killed. It may be updated in the future to exit if provided
with an error flag.

This process begins with setup of sockets and retrieving the experiment class from the module.
It then waits for a message of type RadarStatus to come in from the radar_control block. If
the status is ‘EXPNEEDED’, meaning an experiment is needed, experiment_handler will build the
scan iterable objects (of class ScanClassBase) and will pass them to radar_control. Other
statuses will be implemented in the future.

In the future, the update method will be implemented where the experiment can be modified by
the incoming data.

	
experiment_handler.experiment_handler.experiment_parser()

	Creates the parser to retrieve the experiment module.

	Returns

	parser, the argument parser for the experiment_handler.

	
experiment_handler.experiment_handler.printing(msg)

	

	
experiment_handler.experiment_handler.retrieve_experiment(experiment_module_name)

	Retrieve the experiment class from the provided module given as an argument.

	Parameters

	experiment_module_name – The name of the experiment module to run
from the Borealis project’s experiments directory.

	Raises

	ExperimentException – if the experiment module provided as an argument does not contain
a single class that inherits from ExperimentPrototype class.

	Returns

	Experiment, the experiment class, inherited from ExperimentPrototype.

	
experiment_handler.experiment_handler.send_experiment(exp_handler_to_radar_control, iden, serialized_exp)

	Send the experiment to radar_control module.

	Parameters

	
	exp_handler_to_radar_control – socket to send the experiment on

	iden – ZMQ identity

	serialized_exp – Either a pickled experiment or a None.

	
experiment_handler.experiment_handler.usage_msg()

	Return the usage message for this process.

This is used if a -h flag or invalid arguments are provided.

	Returns

	the usage message

Usage

radar_control package

The radar_control package contains a single module, radar_control, that is a
standalone program.

Brian

Brian is an administrator process for Borealis. It acts as a router for all messages in the system and it is responsible for controlling the flow of logic. This process was originally called Brain, but after repeated misspellings, the name Brian stuck.

Brian implements a ZMQ router in order for all the other processes to connect. Using a ZMQ router lets us to use a feature of ZMQ for named sockets. The premise of named sockets is that we can connect a single router address, and when we connect we can supply a name for the socket we are connecting from. ZMQ’s router process will then automatically know how to send data to that socket if another socket sends to the identity instead of an address. This makes following the flow of messages much easier to track. By having all messages flow through a router, its possible to log the flow of data between sockets to make sure that the pipeline of messages is occuring in the correct order, and if not it is a helpful tool in debugging.

[image: Block diagram of ZMQ connections]

Block diagram of ZMQ connections

Brian is also responsible for rate controlling the system. Since all the traffic routes through this module, it is an ideal place to make sure that the pipeline isn’t being overwhelmed by any modules. This step is very important to make sure that the GPU processing isn’t being overloaded with work or that too many new requests enter the USRP driver.

Rx Signal Processing

The Borealis radar receive side signal processing is mostly moved into software using the digital radar design. The RX DSP block is designed to utilize a GPU and threading in order to maximize parallelism to be able to process as much data as possible in real-time.

Borealis experiments give lots of flexibility for filtering. Filter coefficients are generated as
part of decimation schemes at the experiment level. The DSP block receives the coefficients for
each stage of decimation from Radar Control. The DSP block has been designed to be able to run
as many decimation stages as are configured in the decimation scheme. This allows SuperDARN users
to have as much control as they want in designing filter characteristics.

[image: Block diagram of RX DSP software]

Block diagram of RX DSP software

Sampled data stored in shared memory is then opened, and operation of the GPU is configured. The GPU programming is set up in an asynchronous mode, meaning that more than one stream [http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#streams] can run at once. The GPU does not have enough computation resources to be able to process data from more than one sequence, but in asynchronous mode data from one sequence can be copied to the GPU memory while another sequence is being processed. Asynchronous mode also allows for a callback function that executes when the stream is finished executing without interrupting operation of the main thread. GPU operations works as follows:

	Memory is allocated on device to hold data for each stage of decimation.

	Parallelized filtering convolution calculations are performed for each stage.

	A callback function is run once the GPU is finished processing.

The GPU stream callback [http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#stream-callbacks] runs in a new thread and copies the processed samples back to the host machine. The processed samples are then sent to another process to be written to file. A final deconstructor is run that frees all associated memory resources for the completed sequence.

Filtering convolutions involve many multiply and add operations over a set of data, and many of these operations can be run concurrently. Key to understanding how GPU parallel processing occurs requires reading and studying the CUDA programming guide [http://docs.nvidia.com/cuda/cuda-c-programming-guide/]. In this application, two different kernels are used.

A bandpass filtering CUDA kernel is written to perform the convolutions and the GPU is configured with a two dimensional grid of two dimension blocks. In this case there is a single input data set, and one output data set for each frequency. The grid has a block for each decimated output sample by number of antennas. Each block is made up of set of threads and there is a thread for each filter coefficient by number of total filters. What this all means is that the GPU will attempt to process as many output samples that the device can run at once. Each output sample calculation will have all the multiplies and adds done concurrently for the filters for each frequency.

A lowpass filtering CUDA kernel is similar in operation, however since there is now potentially one or more data sets that get individually reduced, the kernel dimensions get slightly changed. The grid now adds a third dimension for frequency data set and the block now only has one set of threads for a single lowpass filter.

[image: Diagram of Rx DSP data flow during decimation]

Diagram of Rx DSP data flow during decimation

	Another representation of Frerking’s method

	File dsp.cu

	File dsp.hpp

	File decimate.cu

	File decimate.hpp

	File filtering.hpp

Another representation of Frerking’s method

Frerking’s method is found in Frerking, M. E., Digital Signal
Processing in Communications Systems, Chapman & Hall, 1994, pp.
171-174. It is a method for creating a frequency-translating FIR filter
by translating the filter coefficients to a bandpass filter and then
convolving with the input samples (to simultaneously mix to baseband and
decimate). The method involves creating multiple bandpass filters so as
to maintain the linear phase property of the FIR filter. The number of
bandpass filters (sets of coefficients) required is defined as
[image: P], and this value is also, therefore, the number of unique
[image: {\phi}] as shown below. The method can really be defined as doing
the following:

[image: \label{eq1} {{b}_k[n]} = h[n]e^{j({\phi}_k + 2{\pi}n\frac{f}{{F}_s})}]

where [image: {b}_k] are the bandpass filters from [image: k=0] to
[image: k=P]. [image: {h[n]}] is the original low pass filter coefficient
set of length [image: N], [image: f] is the translation frequency, and
[image: {F}_s] is the input sampling frequency. [image: {{\phi}_k}] is the
starting phase of the NCO (numerically controlled oscillator) being
multiplied element by element with the low pass filter where

[image: {\phi}_k = 2{\pi}Rk{\frac{f}{{F}_s}}]

and where the minimum integer value [image: P] is determined by the
equation given by Frerking:

[image: PR\frac{f}{{F}_s} = int,\ \ 1 \leq P \leq {F}_s]

where [image: R] is the integer decimation rate. The maximum value of
[image: P] would then be [image: {F}_s], assuming [image: f] and
[image: {F}_s] are integers.

Then, to filter and decimate,

[image: {y[m]} = {y[Rl]} = \sum\limits_{n=0}^N x[Rl-n]{b}_{(n{\bmod}P)}[n]]

where [image: {y[m]}] is each baseband decimated sample, and
[image: {x[l]}] is the input samples. By decimation, the output number of
samples, [image: M = \frac{L}{R}] where [image: L] is the input number of
samples (although to avoid zero-padding for convolution,
[image: M< {\frac{L}{R}}]).

Our new sampling rate will be

[image: {F}_{new} = \frac{{F}_{s}}{R}]

However, by using a single bandpass filter, a new method could be used.
The starting phase of the NCO on the filter coefficient set is pulled
out from the sum, and then phase correction is done on the decimated
samples after the convolution step.

[image: {{b}[n]} = h[n]e^{j({2{\pi}n\frac{f}{{F}_s}})}]

[image: {y[m]} = {y[Rl]} = e^{j{\phi}_k} \sum\limits_{n=0}^N x[Rl-n]{b[n]},\ \ k = m{\bmod}P]

Both methods are equivalent:

[image: e^{j{\phi}_k} \sum\limits_{n=0}^N x[Rl-n]h[n]e^{j(2{\pi}n\frac{f}{{F}_s})} = \sum\limits_{n=0}^N x[Rl-n]h[n]e^{j({\phi}_k + 2{\pi}n\frac{f}{{F}_s})}]

Frerking’s method requires [image: NP] multiplications before
convolution, and for it to be most computationally efficient, it
requires storing [image: P] sets of [image: N] coefficients. For a small
value of [image: P] and a large value of [image: M] output samples, the
number of multiplications would be minimized by this method. However,
the worst case for using Frerking’s method is a large value of
[image: {F}_s], [image: M \ge {F}_s], and an unknown [image: f], meaning
that the storage requirements would be for [image: P = {F}_s] number of
sets of filter coefficients.

For the case when there exists a small value of [image: M] or a large
value of [image: P] or [image: N], the new modified method might be more
computationally efficient, as [image: N + M - \lfloor {\frac{M}{P}} \rfloor] multiplications are
required in this method. However, the new method is more memory
efficient in all cases where [image: P > 1] because only one set of
filter coefficients is required to be stored in all cases.

For an unknown integer value [image: f] and an unknown decimation rate
(or where [image: R] is not a submultiple of [image: {F}_s]), processing
would have to accommodate [image: P = {F}_s], and so Frerking would be
optimal where

[image: N{F}_s < N + M - \lfloor{\frac{M}{{F}_s}}\rfloor]

and the new method would be optimal for

[image: N{F}_s > N + M - \lfloor{\frac{M}{{F}_s}}\rfloor]

File dsp.cu

Functions

	
std::vector<cudaDeviceProp> get_gpu_properties()

	Gets the properties of each GPU in the system.

	Returns

	The gpu properties.

	
void print_gpu_properties(std::vector<cudaDeviceProp> gpu_properties)

	Prints the properties of each cudaDeviceProp in the vector.

More info on properties and calculations here: https://devblogs.nvidia.com/parallelforall/how-query-device-properties-and-handle-errors-cuda-cc/

	Parameters

	gpu_properties – [in] A vector of cudaDeviceProp structs.

File dsp.hpp

Defines

	
gpuErrchk(ans)

	

Typedefs

	
typedef struct rx_slice rx_slice

	

Functions

	
inline void throw_on_cuda_error(cudaError_t code, const char *file, int line)

	

	
std::vector<cudaDeviceProp> get_gpu_properties()

	Gets the properties of each GPU in the system.

	Returns

	The gpu properties.

	
void print_gpu_properties(std::vector<cudaDeviceProp> gpu_properties)

	Prints the properties of each cudaDeviceProp in the vector.

More info on properties and calculations here: https://devblogs.nvidia.com/parallelforall/how-query-device-properties-and-handle-errors-cuda-cc/

	Parameters

	gpu_properties – [in] A vector of cudaDeviceProp structs.

	
void postprocess(DSPCore *dp)

	

	
struct rx_slice

	
#include <dsp.hpp>

Public Functions

	
inline rx_slice(double rx_freq, uint32_t slice_id, uint32_t num_ranges, uint32_t beam_count, float first_range, float range_sep, uint32_t tau_spacing)

	

Public Members

	
double rx_freq

	

	
uint32_t slice_id

	

	
uint32_t num_ranges

	

	
uint32_t beam_count

	

	
float first_range

	

	
float range_sep

	

	
uint32_t tau_spacing

	

	
std::vector<lag> lags

	

	
struct lag

	
#include <dsp.hpp>

Public Functions

	
inline lag(uint32_t pulse_1, uint32_t pulse_2, uint32_t lag_num)

	

Public Members

	
uint32_t pulse_1

	

	
uint32_t pulse_2

	

	
uint32_t lag_num

	

	
class DSPCore

	
#include <dsp.hpp>

Contains the core DSP work done on the GPU.

Public Functions

	
void cuda_postprocessing_callback(uint32_t total_antennas, uint32_t num_samples_rf, std::vector<uint32_t> samples_per_antenna, std::vector<uint32_t> total_output_samples)

	Add the postprocessing callback to the stream.

This function allocates the host space needed for filter stage data and then copies the data from GPU into the allocated space. Certain DSPCore members needed for post processing are assigned such as the rx freqs, the number of rf samples, the total antennas and the vector of samples per antenna(each stage).

	
void initial_memcpy_callback()

	Adds the callback to the CUDA stream to acknowledge the RF samples have been copied.

	
explicit DSPCore(zmq::context_t &context, SignalProcessingOptions &options, uint32_t sq_num, double rx_rate, double output_sample_rate, std::vector<std::vector<float>> filter_taps, std::vector<cuComplex> beam_phases, double driver_initialization_time, double sequence_start_time, std::vector<uint32_t> dm_rates, std::vector<rx_slice> slice_info)

	Initializes the parameters needed in order to do asynchronous DSP processing.

The constructor creates a new CUDA stream and initializes the timing events. It then opens the shared memory with the received RF samples for a pulse sequence.

	Parameters

	
	context – ZMQ’s application context from which to create sockets.

	sig_options – The signal processing options.

	sequence_num – [in] The pulse sequence number for which will be acknowledged.

	rx_rate – [in] The USRP sampling rate.

	output_sample_rate – [in] The final decimated output sample rate.

	filter_taps – [in] The filter taps for each stage.

	beam_phases – [in] The beam phases.

	driver_initialization_time – [in] The driver initialization time.

	sequence_start_time – [in] The sequence start time.

	dm_rates – [in] The decimation rates.

	slice_info – [in] The slice info given as a vector of rx_slice structs.

	
~DSPCore()

	Frees all associated pointers, events, and streams. Removes and deletes shared memory.

	
void allocate_and_copy_frequencies(void *freqs, uint32_t num_freqs)

	Allocates device memory for the filtering frequencies and then copies them to device.

	Parameters

	
	freqs – A pointer to the filtering freqs.

	num_freqs – [in] The number of freqs.

	
void allocate_and_copy_rf_samples(uint32_t total_antennas, uint32_t num_samples_needed, int64_t extra_samples, uint32_t offset_to_first_pulse, double time_zero, double start_time, uint64_t ringbuffer_size, std::vector<cuComplex*> &ringbuffer_ptrs_start)

	Allocates device memory for the RF samples and then copies them to device.

Samples are being stored in a shared memory ringbuffer. This function calculates where to index into the ringbuffer for samples and copies them to the gpu. This function will also copy the samples to a shared memory section that data write, or another process can access in order to work with the raw RF samples.

	Parameters

	
	total_antennas – [in] The total number of antennas.

	num_samples_needed – [in] The number of samples needed from each antenna ringbuffer.

	extra_samples – [in] The number of extra samples needed for filter propagation.

	offset_to_first_pulse – [in] Offset from sequence start to center of first pulse.

	time_zero – [in] The time the driver began collecting samples. seconds since epoch.

	start_time – [in] The start time of the pulse sequence. seconds since epoch.

	ringbuffer_size – [in] The ringbuffer size in number of samples.

	ringbuffer_ptrs_start – A vector of pointers to the start of each antenna ringbuffer.

	
void allocate_and_copy_bandpass_filters(void *taps, uint32_t total_taps)

	Allocate and copy bandpass filters for all rx freqs to gpu.

	Parameters

	
	taps – A pointer to the filter taps.

	total_taps – [in] The total amount of filter taps.

	
std::vector<cuComplex*> get_filter_outputs_h()

	Gets the vector of host side filter outputs.

	Returns

	The filter outputs host vector.

	
cuComplex *get_last_filter_output_d()

	Gets the last filter output d.

	Returns

	The last filter output d.

	
std::vector<cuComplex*> get_lowpass_filters_d()

	

	
cuComplex *get_last_lowpass_filter_d()

	Gets the last pointer stored in the lowpass filters vector.

	Returns

	The last lowpass filter pointer inserted into the vector.

	
std::vector<uint32_t> get_samples_per_antenna()

	Gets the samples per antenna vector. Vector contains an element for each stage.

	Returns

	The samples per antenna vector.

	
std::vector<uint32_t> get_dm_rates()

	Gets the vector of decimation rates.

	Returns

	The dm rates.

	
cuComplex *get_bp_filters_p()

	Gets the bandpass filters device pointer.

	Returns

	The bandpass filter pointer.

	
void allocate_and_copy_lowpass_filter(void *taps, uint32_t total_taps)

	Allocate and copy a lowpass filter to the gpu.

	Parameters

	
	taps – A pointer to the filter taps.

	total_taps – [in] The total amount of filter taps.

	
void allocate_output(uint32_t num_output_samples)

	Allocate a filter output on the GPU.

	Parameters

	num_output_samples – [in] The number output samples

	
std::vector<std::vector<float>> get_filter_taps()

	The vector containing vectors of filter taps for each stage.

	Returns

	The filter taps vectors for each stage.

	
uint32_t get_num_antennas()

	Gets the number of antennas.

	Returns

	The number of antennas.

	
float get_total_timing()

	Gets the total GPU process timing in milliseconds.

	Returns

	The total process timing.

	
float get_decimate_timing()

	Gets the total decimation timing in milliseconds.

	Returns

	The decimation timing.

	
void allocate_and_copy_host(uint32_t num_output_samples, cuComplex *output_d)

	Allocate a host pointer for decimation stage output and then copy data.

	Parameters

	
	num_output_samples – [in] The number output samples needed.

	output_d – The device pointer from which to copy from.

	
void clear_device_and_destroy()

	

	
cuComplex *get_rf_samples_p()

	Gets the device pointer to the RF samples.

	Returns

	The RF samples device pointer.

	
std::vector<cuComplex> get_rf_samples_h()

	Gets the host pointer to the RF samples.

	Returns

	The rf samples host pointer.

	
double *get_frequencies_p()

	Gets the device pointer to the receive frequencies.

	Returns

	The frequencies device pointer.

	
uint32_t get_num_rf_samples()

	Gets the number of rf samples.

	Returns

	The number of rf samples.

	
uint32_t get_sequence_num()

	Gets the sequence number.

	Returns

	The sequence number.

	
double get_rx_rate()

	Gets the rx sample rate.

	Returns

	The rx sampling rate (samples per second).

	
double get_output_sample_rate()

	Gets the output sample rate.

	Returns

	The output decimated and filtered rate (samples per second).

	
double get_driver_initialization_time()

	Gets the driver initialization timestamp.

	Returns

	The driver initialization timestamp.

	
double get_sequence_start_time()

	Gets the sequence start timestamp.

	Returns

	The sequence start timestamp.

	
std::vector<rx_slice> get_slice_info()

	Gets the vector of slice information, rx_slice structs.

	Returns

	The vector of rx_slice structs with slice information.

	
cudaStream_t get_cuda_stream()

	Gets the CUDA stream this DSPCore’s work is associated to.

	Returns

	The CUDA stream.

	
std::vector<cuComplex> get_beam_phases()

	Gets the vector of beam phases.

	Returns

	The beam phases.

	
std::string get_shared_memory_name()

	Gets the name of the shared memory section.

	Returns

	The shared memory name string.

	
void start_decimate_timing()

	Starts the timing before the GPU kernels execute.

	
void stop_timing()

	Stops the timers that the constructor starts.

	
void send_ack()

	Sends the acknowledgment to the radar control that the RF samples have been transfered.

RF samples of one pulse sequence can be transfered asynchronously while samples of another are being processed. This means that it is possible to start running a new pulse sequence in the driver as soon as the samples are copied. The asynchronous nature means only timing constraint is the time needed to run the GPU kernels for decimation.

	
void send_timing()

	Sends the GPU kernel timing to the radar control.

The timing here is used as a rate limiter, so that the GPU doesn’t become backlogged with data. If the GPU is overburdened, this will result in less averages, but the system wont crash.

	
void send_processed_data(processeddata::ProcessedData &pd)

	Sends a processed data packet to data write.

	Parameters

	pd – A processeddata protobuf object.

Public Members

	
SignalProcessingOptions sig_options

	

	
Filtering *dsp_filters

	

Private Functions

	
void allocate_and_copy_rf_from_device(uint32_t num_rf_samples)

	

Private Members

	
cudaStream_t stream

	CUDA stream the work will be associated with.

	
uint32_t sequence_num

	Sequence number used to identify and acknowledge a pulse sequence.

	
double rx_rate

	Rx sampling rate for the data being processed.

	
double output_sample_rate

	Output sampling rate of the filtered, decimated, processed data.

	
std::vector<zmq::socket_t> zmq_sockets

	The unique sockets for communicating between processes.

	
float total_process_timing_ms

	Stores the total GPU process timing once all the work is done.

	
float decimate_kernel_timing_ms

	Stores the decimation timing.

	
double *freqs_d

	Pointer to the device rx frequencies.

	
cuComplex *rf_samples_d

	Pointer to the RF samples on device.

	
cuComplex *bp_filters_d

	Pointer to the first stage bandpass filters on device.

	
std::vector<cuComplex*> lp_filters_d

	Vector of device side lowpass filter pointers.

	
std::vector<cuComplex*> filter_outputs_d

	Vector of device side filter output pointers.

	
std::vector<cuComplex*> filter_outputs_h

	Vector of host side filter output pointers.

	
std::vector<uint32_t> samples_per_antenna

	Vector of the samples per antenna at each stage of decimation.

	
std::vector<uint32_t> dm_rates

	Vector of decimation rates at each stage.

	
std::vector<std::vector<float>> filter_taps

	Vector that holds the vectors of filter taps at each stage.

	
cudaEvent_t initial_start

	CUDA event to timestamp when the GPU processing begins.

	
cudaEvent_t kernel_start

	CUDA event to timestamp when the kernels begin executing.

	
cudaEvent_t stop

	CUDA event to timestamp when the GPU processing stops.

	
cudaEvent_t mem_transfer_end

	Cuda event to timestamp the transfer of RF samples to the GPU.

	
float mem_time_ms

	Stores the memory transfer timing.

	
std::vector<cuComplex*> ringbuffers

	A vector of pointers to the start of ringbuffers.

	
std::vector<cuComplex> rf_samples_h

	A host side vector for the rf samples.

	
uint32_t num_antennas

	The number of total antennas.

	
uint32_t num_rf_samples

	The number of rf samples per antenna.

	
std::vector<cuComplex> beam_phases

	A set of beam angle phases for each beam direction.

	
SharedMemoryHandler shm

	A handler for a shared memory section.

	
double driver_initialization_time

	Timestamp of when the driver began sampling. Seconds since epoch.

	
double sequence_start_time

	Timestamp of when the sequence began. Seconds since epoch.

	
std::vector<rx_slice> slice_info

	Slice information given from rx_slice structs.

File decimate.cu

Functions

	
inline __device__ cuComplex __shfl_down_sync (cuComplex var, unsigned int srcLane, int width=32)

	Overloads __shfl_down to handle cuComplex.

__shfl can only shuffle 4 bytes at time. This overload utilizes a trick similar to the below link in order to shuffle 8 byte values. https://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/ http://docs.nvidia.com/cuda/cuda-c-programming-guide/#warp-shuffle-functions

	Parameters

	
	var – [in] cuComplex value to shuffle.

	srcLane – [in] Relative lane from within the warp that should shuffle its variable down.

	width – [in] Section of the warp to shuffle. Defaults to full warp size.

	Returns

	Shuffled cuComplex variable.

	
__device__ cuComplex parallel_reduce (cuComplex *data, uint32_t tap_offset)

	Performs a parallel reduction to sum a series of values together.

NVIDIA supplies many versions of optimized parallel reduction. This is a slightly modified version of reduction #5 from NVIDIA examples. /usr/local/cuda/samples/6_Advanced/reduction

	Parameters

	
	data – A pointer to a set of cuComplex data to reduce.

	tap_offset – [in] The offset into the data from which to pull values.

	Returns

	Final sum after reduction.

	
__device__ __forceinline__ cuComplex _exp (cuComplex z)

	cuComplex version of exponential function.

	Parameters

	z – [in] Complex number.

	Returns

	Complex exponential of input.

	
__global__ void bandpass_decimate1024 (cuComplex *original_samples, cuComplex *decimated_samples, cuComplex *filter_taps, uint32_t dm_rate, uint32_t samples_per_antenna, double F_s, double *freqs)

	Performs decimation using bandpass filters on a set of input RF samples if the total number of filter taps for all filters is less than 1024.

This function performs a parallel version of filtering+downsampling on the GPU to be able process data in realtime. This algorithm will use 1 GPU thread per filter tap if there are less than 1024 taps for all filters combined. Only works with power of two length filters, or a filter that is zero padded to a power of two in length. This algorithm takes a single set of wide band samples from the USRP driver, and produces an output data set for each RX frequency. The phase of each output sample is corrected to after decimating via modified Frerking method.

gridDim.x - Total number of output samples there will be after decimation. gridDim.y - Total number of antennas.

blockIdx.x - Decimated output sample index. blockIdx.y - Antenna index.

blockDim.x - Number of filter taps in the lowpass filter. blockDim.y - Total number of filters. Corresponds to total receive frequencies.

threadIdx.x - Filter tap index. threadIdx.y - Filter index.

	Parameters

	
	original_samples – [in] A pointer to original input samples from each antenna to decimate.

	decimated_samples – [in] A pointer to a buffer to place output samples for each frequency after decimation.

	filter_taps – [in] A pointer to one or more filters needed for each frequency.

	dm_rate – [in] Decimation rate.

	samples_per_antenna – [in] The number of samples per antenna in the original set of samples.

	F_s – [in] The sampling frequency in hertz.

	freqs – [in] A pointer to the frequencies used in mixing.

	
__global__ void bandpass_decimate2048 (cuComplex *original_samples, cuComplex *decimated_samples, cuComplex *filter_taps, uint32_t dm_rate, uint32_t samples_per_antenna, double F_s, double *freqs)

	Performs decimation using bandpass filters on a set of input RF samples if the total number of filter taps for all filters is less than 2048.

This function performs a parallel version of filtering+downsampling on the GPU to be able process data in realtime. This algorithm will use 1 GPU thread to process two filter taps if there are less than 2048 taps for all filters combined. Intended to be used if there are more than 1024 total threads, as that is the max block size possible for CUDA. Only works with power of two length filters, or a filter that is zero padded to a power of two in length. This algorithm takes a single set of wide band samples from the USRP driver, and produces a output data set for each RX frequency.

gridDim.x - Total number of output samples there will be after decimation. gridDim.y - Total number of antennas.

blockIdx.x - Decimated output sample index. blockIdx.y - Antenna index.

blockDim.x - Number of filter taps in each filter / 2. blockDim.y - Total number of filters. Corresponds to total receive frequencies.

threadIdx.x - Every second filter tap index. threadIdx.y - Filter index.

	Parameters

	
	original_samples – [in] A pointer to original input samples from each antenna to decimate.

	decimated_samples – [in] A pointer to a buffer to place output samples for each frequency after decimation.

	filter_taps – [in] A pointer to one or more filters needed for each frequency.

	dm_rate – [in] Decimation rate.

	samples_per_antenna – [in] The number of samples per antenna in the original set of samples.

	F_s – [in] The sampling frequency in hertz.

	freqs – [in] A pointer to the frequencies used in mixing.

	
void bandpass_decimate1024_wrapper(cuComplex *original_samples, cuComplex *decimated_samples, cuComplex *filter_taps, uint32_t dm_rate, uint32_t samples_per_antenna, uint32_t num_taps_per_filter, uint32_t num_freqs, uint32_t num_antennas, double F_s, double *freqs, cudaStream_t stream)

	This function wraps the bandpass_decimate1024 kernel so that it can be called from another file.

	Parameters

	
	original_samples – [in] A pointer to original input samples from each antenna to decimate.

	decimated_samples – [in] A pointer to a buffer to place output samples for each frequency after decimation.

	filter_taps – [in] A pointer to one or more filters needed for each frequency.

	dm_rate – [in] Decimation rate.

	samples_per_antenna – [in] The number of samples per antenna in the original set of samples.

	num_taps_per_filter – [in] Number of taps per filter.

	num_freqs – [in] Number of receive frequencies.

	num_antennas – [in] Number of antennas for which there are samples.

	F_s – [in] The original sampling frequency.

	freqs – A pointer to the frequencies being filtered.

	stream – [in] CUDA stream with which to associate the invocation of the kernel.

	
void bandpass_decimate2048_wrapper(cuComplex *original_samples, cuComplex *decimated_samples, cuComplex *filter_taps, uint32_t dm_rate, uint32_t samples_per_antenna, uint32_t num_taps_per_filter, uint32_t num_freqs, uint32_t num_antennas, double F_s, double *freqs, cudaStream_t stream)

	This function wraps the bandpass_decimate2048 kernel so that it can be called from another file.

	Parameters

	
	original_samples – [in] A pointer to original input samples from each antenna to decimate.

	decimated_samples – [in] A pointer to a buffer to place output samples for each frequency after decimation.

	filter_taps – [in] A pointer to one or more filters needed for each frequency.

	dm_rate – [in] Decimation rate.

	samples_per_antenna – [in] The number of samples per antenna in the original set of samples.

	num_taps_per_filter – [in] Number of taps per filter.

	num_freqs – [in] Number of receive frequencies.

	num_antennas – [in] Number of antennas for which there are samples.

	F_s – [in] The original sampling frequency.

	freqs – A pointer to the frequencies being filtered.

	stream – [in] CUDA stream with which to associate the invocation of the kernel.

	
__global__ void lowpass_decimate1024 (cuComplex *original_samples, cuComplex *decimated_samples, cuComplex *filter_taps, uint32_t dm_rate, uint32_t samples_per_antenna)

	Performs decimation using a lowpass filter on one or more sets of baseband samples corresponding to each RX frequency. This algorithm works on filters with less that 1024 taps.

This function performs a parallel version of filtering+downsampling on the GPU to be able process data in realtime. This algorithm will use 1 GPU thread per filter tap if there are less than 1024 taps for all filters combined. Only works with power of two length filters, or a filter that is zero padded to a power of two in length. This algorithm takes one or more baseband datasets corresponding to each RX frequency and filters each one using a single lowpass filter before downsampling.

gridDim.x - The number of decimated output samples for one antenna in one frequency data set. gridDim.y - Total number of antennas. gridDim.z - Total number of frequency data sets.

blockIdx.x - Decimated output sample index. blockIdx.y - Antenna index. blockIdx.z - Frequency dataset index.

blockDim.x - Number of filter taps in the lowpass filter.

threadIdx.x - Filter tap indices.

	Parameters

	
	original_samples – [in] A pointer to input samples for one or more baseband datasets.

	decimated_samples – [in] A pointer to a buffer to place output samples for each frequency dataset after decimation.

	filter_taps – [in] A pointer to a lowpass filter used for further decimation.

	dm_rate – [in] Decimation rate.

	samples_per_antenna – [in] The number of samples per antenna in the original set of samples.

	
__global__ void lowpass_decimate2048 (cuComplex *original_samples, cuComplex *decimated_samples, cuComplex *filter_taps, uint32_t dm_rate, uint32_t samples_per_antenna)

	Performs decimation using a lowpass filter on one or more sets of baseband samples corresponding to each RX frequency. This algorithm works on filters with less that 2048 taps.

This function performs a parallel version of filtering+downsampling on the GPU to be able process data in realtime. This algorithm will use 1 GPU thread to process two filter taps if there are less than 2048 taps for all filters combined. Intended to be used if there are more than 1024 total threads, as that is the max block size possible for CUDA. Only works with power of two length filters, or a filter that is zero padded to a power of two in length. This algorithm takes one or more baseband datasets corresponding to each RX frequency and filters each one using a single lowpass filter before downsampling.

gridDim.x - The number of decimated output samples for one antenna in one frequency data set. gridDim.y - Total number of antennas. gridDim.z - Total number of frequency data sets.

blockIdx.x - Decimated output sample index. blockIdx.y - Antenna index. blockIdx.z - Frequency dataset index.

blockDim.x - Number of filter taps in the lowpass filter / 2.

threadIdx.x - Every second filter tap index.

	Parameters

	
	original_samples – [in] A pointer to input samples for one or more baseband datasets.

	decimated_samples – [in] A pointer to a buffer to place output samples for each frequency dataset after decimation.

	filter_taps – [in] A pointer to a lowpass filter used for further decimation.

	dm_rate – [in] Decimation rate.

	samples_per_antenna – [in] The number of samples per antenna in the original set of samples.

	
void lowpass_decimate1024_wrapper(cuComplex *original_samples, cuComplex *decimated_samples, cuComplex *filter_taps, uint32_t dm_rate, uint32_t samples_per_antenna, uint32_t num_taps_per_filter, uint32_t num_freqs, uint32_t num_antennas, cudaStream_t stream)

	This function wraps the lowpass_decimate1024 kernel so that it can be called from another file.

	Parameters

	
	original_samples – [in] A pointer to one or more baseband frequency datasets.

	decimated_samples – [in] A pointer to a buffer to place output samples for each frequency after decimation.

	filter_taps – [in] A pointer to one lowpass filter.

	dm_rate – [in] Decimation rate.

	samples_per_antenna – [in] The number of samples per antenna in each data set.

	num_taps_per_filter – [in] Number of taps per filter.

	num_freqs – [in] Number of receive frequency datasets.

	num_antennas – [in] Number of antennas for which there are samples.

	stream – [in] CUDA stream with which to associate the invocation of the kernel.

	
void lowpass_decimate2048_wrapper(cuComplex *original_samples, cuComplex *decimated_samples, cuComplex *filter_taps, uint32_t dm_rate, uint32_t samples_per_antenna, uint32_t num_taps_per_filter, uint32_t num_freqs, uint32_t num_antennas, cudaStream_t stream)

	This function wraps the lowpass_decimate2048 kernel so that it can be called from another file.

	Parameters

	
	original_samples – [in] A pointer to one or more baseband frequency datasets.

	decimated_samples – [in] A pointer to a buffer to place output samples for each frequency after decimation.

	filter_taps – [in] A pointer to one lowpass filter.

	dm_rate – [in] Decimation rate.

	samples_per_antenna – [in] The number of samples per antenna in each data set.

	num_taps_per_filter – [in] Number of taps per filter.

	num_freqs – [in] Number of receive frequency datasets.

	num_antennas – [in] Number of antennas for which there are samples.

	stream – [in] CUDA stream with which to associate the invocation of the kernel.

File decimate.hpp

Enums

	
enum DecimationType

	Values:

	
enumerator lowpass

	

	
enumerator bandpass

	

Functions

	
void bandpass_decimate1024_wrapper(cuComplex *input_samples, cuComplex *decimated_samples, cuComplex *filter_taps, uint32_t dm_rate, uint32_t samples_per_antenna, uint32_t num_taps_per_filter, uint32_t num_freqs, uint32_t num_antennas, double F_s, double *freqs, cudaStream_t stream)

	This function wraps the bandpass_decimate1024 kernel so that it can be called from another file.

	Parameters

	
	original_samples – [in] A pointer to original input samples from each antenna to decimate.

	decimated_samples – [in] A pointer to a buffer to place output samples for each frequency after decimation.

	filter_taps – [in] A pointer to one or more filters needed for each frequency.

	dm_rate – [in] Decimation rate.

	samples_per_antenna – [in] The number of samples per antenna in the original set of samples.

	num_taps_per_filter – [in] Number of taps per filter.

	num_freqs – [in] Number of receive frequencies.

	num_antennas – [in] Number of antennas for which there are samples.

	F_s – [in] The original sampling frequency.

	freqs – A pointer to the frequencies being filtered.

	stream – [in] CUDA stream with which to associate the invocation of the kernel.

	
void bandpass_decimate2048_wrapper(cuComplex *input_samples, cuComplex *decimated_samples, cuComplex *filter_taps, uint32_t dm_rate, uint32_t samples_per_antenna, uint32_t num_taps_per_filter, uint32_t num_freqs, uint32_t num_antennas, double F_s, double *freqs, cudaStream_t stream)

	This function wraps the bandpass_decimate2048 kernel so that it can be called from another file.

	Parameters

	
	original_samples – [in] A pointer to original input samples from each antenna to decimate.

	decimated_samples – [in] A pointer to a buffer to place output samples for each frequency after decimation.

	filter_taps – [in] A pointer to one or more filters needed for each frequency.

	dm_rate – [in] Decimation rate.

	samples_per_antenna – [in] The number of samples per antenna in the original set of samples.

	num_taps_per_filter – [in] Number of taps per filter.

	num_freqs – [in] Number of receive frequencies.

	num_antennas – [in] Number of antennas for which there are samples.

	F_s – [in] The original sampling frequency.

	freqs – A pointer to the frequencies being filtered.

	stream – [in] CUDA stream with which to associate the invocation of the kernel.

	
void lowpass_decimate1024_wrapper(cuComplex *input_samples, cuComplex *decimated_samples, cuComplex *filter_taps, uint32_t dm_rate, uint32_t samples_per_antenna, uint32_t num_taps_per_filter, uint32_t num_freqs, uint32_t num_antennas, cudaStream_t stream)

	This function wraps the lowpass_decimate1024 kernel so that it can be called from another file.

	Parameters

	
	original_samples – [in] A pointer to one or more baseband frequency datasets.

	decimated_samples – [in] A pointer to a buffer to place output samples for each frequency after decimation.

	filter_taps – [in] A pointer to one lowpass filter.

	dm_rate – [in] Decimation rate.

	samples_per_antenna – [in] The number of samples per antenna in each data set.

	num_taps_per_filter – [in] Number of taps per filter.

	num_freqs – [in] Number of receive frequency datasets.

	num_antennas – [in] Number of antennas for which there are samples.

	stream – [in] CUDA stream with which to associate the invocation of the kernel.

	
void lowpass_decimate2048_wrapper(cuComplex *input_samples, cuComplex *decimated_samples, cuComplex *filter_taps, uint32_t dm_rate, uint32_t samples_per_antenna, uint32_t num_taps_per_filter, uint32_t num_freqs, uint32_t num_antennas, cudaStream_t stream)

	This function wraps the lowpass_decimate2048 kernel so that it can be called from another file.

	Parameters

	
	original_samples – [in] A pointer to one or more baseband frequency datasets.

	decimated_samples – [in] A pointer to a buffer to place output samples for each frequency after decimation.

	filter_taps – [in] A pointer to one lowpass filter.

	dm_rate – [in] Decimation rate.

	samples_per_antenna – [in] The number of samples per antenna in each data set.

	num_taps_per_filter – [in] Number of taps per filter.

	num_freqs – [in] Number of receive frequency datasets.

	num_antennas – [in] Number of antennas for which there are samples.

	stream – [in] CUDA stream with which to associate the invocation of the kernel.

	
template<DecimationType type>
void call_decimate(cuComplex *input_samples, cuComplex *decimated_samples, cuComplex *filter_taps, uint32_t dm_rate, uint32_t samples_per_antenna, uint32_t num_taps_per_filter, uint32_t num_freqs, uint32_t num_antennas, double F_s, double *freqs, const char *output_msg, cudaStream_t stream)

	Selects which decimate kernel to run.

	Parameters

	
	input_samples – [in] A pointer to original input samples from each antenna to decimate.

	decimated_samples – [in] A pointer to a buffer to place output samples for each frequency after decimation.

	filter_taps – [in] A pointer to one or more filters needed for each frequency. If using lowpass, one filter is used. If using bandpass, there is one filter for each RX frequency.

	dm_rate – [in] Decimation rate.

	samples_per_antenna – [in] The number of samples per antenna in the input set of samples for one frequency.

	num_taps_per_filter – [in] Number of taps per filter.

	num_freqs – [in] Number of receive frequencies.

	num_antennas – [in] Number of antennas for which there are samples.

	F_s – [in] The original sampling frequency.

	freqs – A pointer to the filtering freqs.

	output_msg – [in] A simple character string that can be used to debug or distinguish different stages.

	stream – [in] The CUDA stream for which to run a run a kernel. Based off the total number of filter taps, this function will choose what decimate
 kernel to use.

	Template Parameters

	type – { description }

File filtering.hpp

	
class Filtering

	
#include <filtering.hpp>

Class for filtering.

Public Functions

	
Filtering() = default

	

	
explicit Filtering(std::vector<std::vector<float>> input_filter_taps)

	The constructor finds the number of filter taps for each stage and then a lowpass filter for each stage.

	Parameters

	input_filter_taps – [in] The filter taps sent from radar control.

	
void save_filter_to_file(const std::vector<std::complex<float>> &filter_taps, std::string name)

	Writes out a set of filter taps to file in case they need to be tested.

	Parameters

	
	filter_taps – [in] A reference to a vector of filter taps.

	name – [in] A output file name.

	
void mix_first_stage_to_bandpass(const std::vector<double> &rx_freqs, double initial_rx_rate)

	Mixes the first stage lowpass filter to bandpass filters for each RX frequency.

Creates a flatbuffer with a bandpass filter for each RX frequency to be used in decimation.

	Parameters

	
	rx_freqs – [in] rx_freqs A reference to a vector of RX frequencies in Hz.

	initial_rx_sample_rate – [in] initial_rx_sample_rate The USRP RX sampling rate in Hz.

	
std::vector<std::vector<std::complex<float>>> get_mixed_filter_taps()

	Gets the mixed filter taps at each stage.

A temp vector is created. The first stage taps are replaced with the bandpass taps.

	Returns

	The mixed filter taps.

	
std::vector<std::vector<std::complex<float>>> get_unmixed_filter_taps()

	Gets the unmixed filter taps at each stage.

The unmixed filter taps are returned.

	Returns

	The unmixed filter taps.

Private Functions

	
std::vector<std::complex<float>> fill_filter(std::vector<float> &filter_taps)

	Fills the lowpass filter taps with zero to a size that is a power of 2.

	Parameters

	filter_taps – [in] The filter taps provided, will be real.

	Returns

	A vector of filter taps. Filter is real, but represented using complex<float> form R + i0 for each tap. The vector is filled with zeros at the end to reach a length that is a power of 2 for processing.

Private Members

	
std::vector<std::vector<std::complex<float>>> filter_taps

	Vector that holds the vectors of filter taps at each stage.

	
std::vector<std::complex<float>> bandpass_taps

	A vector to hold the bandpass taps after first stage filter has been mixed.

USRP N200 Driver

The N200 driver is a C++ application that controls the operation of the USRP N200 transceivers. The driver is responsible for using Ettus’ UHD software to configure a multi-USRP device [https://files.ettus.com/manual/classuhd_1_1usrp_1_1multi__usrp.html] and configure the device for SuperDARN operation.

As part of the driver, a C++ class was written to abstract the configuration of the N200s. The driver configures the N200s using certain options from the config file as well as options related to the experiment. All runtime options and control are defined by the Radar Control module.

The driver consists of the main function and three worker threads. The main function is responsible for instantiating a USRP object, and configuring some initial runtime options such as which physical devices to use, the GPIO bank, the timing signal masks, the clock source, the subdevs for TX and RX, and the time source. These options are configured once at runtime and then not changed during operation. The main function then starts the transmit, and receive worker threads.

Transmit Thread

On a driver packet indicating the start of a new sequence(SOB is true), the transmit thread will configure some multi-USRP parameters such as what TX channels(antennas) to use, the TX center frequency, and the buffer of samples to send as a pulse. The driver requires these all be set once but can be omitted in future sequences if they are repeated. No need to continually serialize and deserialize duplicated information. Each driver packet in the sequence contains a relative time from the start of the sequence to when the pulse should be transmitted. If SOB is true, then a sequence start time is created by using the UHD current time as a reference to when pulses should start. A slight delay is added to allow for some CPU time to finish configuring the pulse. Once the pulse time relative to time zero is calculated, the multi-USRP object is configured to send the pulse samples at that time.

TR switching signals are generated using the USRP ATR [https://files.ettus.com/manual/classuhd_1_1usrp_1_1multi__usrp.html#a57f25d118d20311aca261e6dd252625e] functionality. The ATR pins are only triggered exactly when the USRP is sending or receiving, so in order to properly window the RF signal, zeros are padded to the start and end of the signal. From testing, the zeros do not create any issues such as higher noise, etc. They purely allow us to create a window for TR signals. The actual TR signal is ATR_XX. We are receiving during the whole sequence, so the full-duplex pin is the pin that goes high when we are transmitting while receiving. The current version of borealis does not allow for transmitting only.

After all pulses are sent all the parameters needed for processing the received samples are sent to the DSP unit. The ringbuffer initialization time and the sequence start time are included so that the DSP unit can properly select where the sequence samples start in the ringbuffer.

Receive Thread

Under heavy load, the USRP does not seem to respond well to timed receive events. We use a continuous receive ringbuffer system to minimize dropped samples. Instead of using a time triggered receive event, we start sampling continuously at a time. We then use the timestamp of the transmit pulse sequence to calculate where in the ringbuffer the pulse sequence samples are located.

[image: Ringbuffer Visualization]

Diagram of Ringbuffer

The diagram above shows that each USRP receive channel maps to an individual ringbuffer implemented in memory. Each square represents a sample, and for brevity only a few channels are shown. T0 is the beginning sample in time at which the ringbuffer is initialized. Twrap is the sample in time at which the ringbuffer wraps around, or the length of ringbuffer. By knowing exactly when the ringbuffer was initialized and the exact time the pulse sequence began, we can calculate where in the ringbuffer the sequence samples are by calculating how many times the buffer wrapped. If t is the amount of time passed from when the buffer was initialized to the time the sequence was sent, then Toffset is calculated by dividing t by the sampling frequency, Fs, to convert time to number of samples, then dividing this result by Twrap and taking the remainder. Toffset is then used as the offset into the buffer from which samples are later copied out for further processing.

Once the multi-USRP is configured, a shared memory handler is created. Received samples are put directly into shared memory that can be accessed by both the driver and Rx Signal Processing. This minimizes the amount of interprocess copying needed. Once the shared memory is created, pointer offsets into the shared memory are calculated for where each channel buffer begins.

The receive thread configures the ringbuffer and shared memory sections. It then initializes the USRP streaming mode. Right before it begins streaming it sends the initialization time and ringbuffer size to transmit thread. This acts as as “go” signal for the transmit thread to begin and the transmit thread needs to send this info to the DSP unit.

	File usrp_driver.cpp

	File usrp.hpp

File usrp_driver.cpp

Defines

	
SET_TIME_COMMAND_DELAY

	

	
TUNING_DELAY

	

Functions

	
std::vector<std::vector<std::complex<float>>> make_tx_samples(const driverpacket::DriverPacket &driver_packet, const DriverOptions &driver_options)

	Makes a set of vectors of the samples for each TX channel from the driver packet.

Values in a protobuffer have no contiguous underlying storage so values need to be parsed into a vector.

	Parameters

	
	driver_packet – [in] A received driver packet from radar_control.

	driver_options – [in] The parsed config options needed by the driver.

	Returns

	A set of vectors of TX samples for each USRP channel.

	
void transmit(zmq::context_t &driver_c, USRP &usrp_d, const DriverOptions &driver_options)

	

	
void receive(zmq::context_t &driver_c, USRP &usrp_d, const DriverOptions &driver_options)

	Runs in a seperate thread to control receiving from the USRPs.

	Parameters

	
	driver_c – [in] The driver ZMQ context.

	usrp_d – [in] The multi-USRP SuperDARN wrapper object.

	driver_options – [in] The driver options parsed from config.

	
int32_t UHD_SAFE_MAIN(int32_t argc, char *argv[])

	UHD wrapped main function to start threads.

Creates a new multi-USRP object using parameters from config file. Starts control, receive, and transmit threads to operate on the multi-USRP object.

	Returns

	EXIT_SUCCESS

Variables

	
uhd::time_spec_t box_time

	

File usrp.hpp

	
class USRP

	
#include <usrp.hpp>

Contains an abstract wrapper for the USRP object.

Public Functions

	
explicit USRP(const DriverOptions &driver_options, float tx_rate, float rx_rate)

	Creates the multiUSRP abstraction with the options from the config file.

	Parameters

	
	driver_options – [in] The driver options parsed from config

	tx_rate – [in] The transmit rate in Sps (samples per second, Hz).

	rx_rate – [in] The receive rate in Sps (samples per second, Hz).

	
void set_usrp_clock_source(std::string source)

	Sets the USRP clock source.

	Parameters

	source – [in] A string for a valid USRP clock source.

	
void set_tx_subdev(std::string tx_subdev)

	Sets the USRP transmit subdev specification.

	Parameters

	tx_subdev – [in] A string for a valid transmit subdev.

	
double set_tx_rate(std::vector<size_t> chs)

	Sets the transmit sample rate.

	Parameters

	chs – [in] A vector of USRP channels to tx on.

	Returns

	Actual set tx rate.

	
double get_tx_rate(uint32_t channel = 0)

	Gets the USRP transmit sample rate.

	Returns

	The transmit sample rate in Sps.

	
double set_tx_center_freq(double freq, std::vector<size_t> chs, uhd::time_spec_t tune_delay)

	Sets the transmit center frequency.

The USRP uses a numbered channel mapping system to identify which data streams come from which USRP and its daughterboard frontends. With the daughtboard frontends connected to the transmitters, controlling what USRP channels are selected will control what antennas are used and what order they are in. To synchronize tuning of all boxes, timed commands are used so that everything is done at once.

	Parameters

	
	freq – [in] The frequency in Hz.

	chs – [in] A vector of which USRP channels to set a center frequency.

	tune_delay – [in] The amount of time in future to tune the devices.

	Returns

	The actual set tx center frequency for the USRPs

	
double get_tx_center_freq(uint32_t channel = 0)

	Gets the transmit center frequency.

	Returns

	The actual center frequency that the USRPs are tuned to.

	
void set_main_rx_subdev(std::string main_subdev)

	Sets the receive subdev for the main array antennas.

Will set all boxes to receive from first USRP channel of all mboards for main array.

	Parameters

	main_subdev – [in] A string for a valid receive subdev.

	
void set_interferometer_rx_subdev(std::string interferometer_subdev, uint32_t interferometer_antenna_count)

	Sets the interferometer receive subdev.

Override the subdev spec of the first mboards to receive on a second channel for the interferometer.

	Parameters

	
	interferometer_subdev – [in] A string for a valid receive subdev.

	interferometer_antenna_count – [in] The interferometer antenna count.

	
double set_rx_rate(std::vector<size_t> rx_chs)

	Sets the receive sample rate.

	Parameters

	rx_chs – [in] The USRP channels to rx on.

	Returns

	The actual rate set.

	
double get_rx_rate(uint32_t channel = 0)

	Gets the USRP transmit sample rate.

	Returns

	The transmit sample rate in Sps.

	
double set_rx_center_freq(double freq, std::vector<size_t> chs, uhd::time_spec_t tune_delay)

	Sets the receive center frequency.

The USRP uses a numbered channel mapping system to identify which data streams come from which USRP and its daughterboard frontends. With the daughtboard frontends connected to the transmitters, controlling what USRP channels are selected will control what antennas are used and what order they are in. To simplify data processing, all antenna mapped channels are used. To synchronize tuning of all boxes, timed commands are used so that everything is done at once.

	Parameters

	
	freq – [in] The frequency in Hz.

	chs – [in] A vector of which USRP channels to set a center frequency.

	tune_delay – [in] The amount of time in future to tune the devices.

	Returns

	The actual center frequency that the USRPs are tuned to.

	
double get_rx_center_freq(uint32_t channel = 0)

	Gets the receive center frequency.

	Returns

	The actual center frequency that the USRPs are tuned to.

	
void set_time_source(std::string source, std::string clk_addr)

	Sets the USRP time source.

Uses the method Ettus suggests for setting time on the x300. https://files.ettus.com/manual/page_gpsdo_x3x0.html Falls back to Juha Vierinen’s method of latching to the current time by making sure the clock time is in a stable place past the second if no gps is available. The USRP is then set to this time.

	Parameters

	
	source – [in] A string with the time source the USRP will use.

	clk_addr – [in] IP address of the octoclock for gps timing.

	
void check_ref_locked()

	Makes a quick check that each USRP is locked to a reference frequency.

	
void create_usrp_rx_stream(std::string cpu_fmt, std::string otw_fmt, std::vector<size_t> chs)

	Creates an USRP receive stream.

	Parameters

	
	cpu_fmt – [in] The cpu format for the tx stream. Described in UHD docs.

	otw_fmt – [in] The otw format for the tx stream. Described in UHD docs.

	chs – [in] A vector of which USRP channels to receive on.

	
void create_usrp_tx_stream(std::string cpu_fmt, std::string otw_fmt, std::vector<size_t> chs)

	Creates an USRP transmit stream.

	Parameters

	
	cpu_fmt – [in] The cpu format for the tx stream. Described in UHD docs.

	otw_fmt – [in] The otw format for the tx stream. Described in UHD docs.

	chs – [in] A vector of which USRP channels to transmit on.

	
void set_command_time(uhd::time_spec_t cmd_time)

	Sets the command time.

	Parameters

	cmd_time – [in] The command time to run a timed command.

	
void clear_command_time()

	Clears any timed USRP commands.

	
std::vector<uint32_t> get_gpio_bank_high_state()

	Gets the state of the GPIO bank represented as a decimal number.

	
std::vector<uint32_t> get_gpio_bank_low_state()

	Gets the state of the GPIO bank represented as a decimal number.

	
uhd::time_spec_t get_current_usrp_time()

	Gets the current USRP time.

	Returns

	The current USRP time.

	
uhd::rx_streamer::sptr get_usrp_rx_stream()

	Gets a pointer to the USRP rx stream.

	Returns

	The USRP rx stream.

	
uhd::tx_streamer::sptr get_usrp_tx_stream()

	Gets a pointer to the USRP tx stream.

	Returns

	The USRP tx stream.

	
uhd::usrp::multi_usrp::sptr get_usrp()

	Gets the usrp.

	Returns

	The multi-USRP shared pointer.

	
std::string to_string(std::vector<size_t> tx_chs, std::vector<size_t> rx_chs)

	Returns a string representation of the USRP parameters.

	Parameters

	
	tx_chs – [in] USRP TX channels for which to generate info for.

	rx_chs – [in] USRP RX channels for which to generate info for.

	Returns

	String representation of the USRP parameters.

	
void invert_test_mode(uint32_t mboard = 0)

	Inverts the current test mode signal. Useful for testing.

	Parameters

	mboard – [in] The USRP to invert test mode on. Default 0.

	
void set_test_mode(uint32_t mboard = 0)

	Sets the current test mode signal HIGH.

	Parameters

	mboard – [in] The USRP to set test mode HIGH on. Default 0.

	
void clear_test_mode(uint32_t mboard = 0)

	Clears the current test mode signal LOW.

	Parameters

	mboard – [in] The USRP to clear test mode LOW on. Default 0.

Private Functions

	
void set_atr_gpios()

	Sets the USRP automatic transmit/receive states on GPIO for the given daughtercard bank.

	
void set_output_gpios()

	Sets the pins mapping the test mode signals as GPIO outputs.

	
void set_input_gpios()

	Sets the pins mapping the AGC and low power signals as GPIO inputs.

Private Members

	
uhd::usrp::multi_usrp::sptr usrp_

	A shared pointer to a new multi-USRP device.

	
std::string gpio_bank_high_

	A string representing what GPIO bank to use on the USRPs for active high sigs.

	
std::string gpio_bank_low_

	A string representing what GPIO bank to use on the USRPs for active low sigs.

	
uint32_t scope_sync_mask_

	The bitmask to use for the scope sync GPIO.

	
uint32_t atten_mask_

	The bitmask to use for the attenuator GPIO.

	
uint32_t tr_mask_

	The bitmask to use for the TR GPIO.

	
uint32_t atr_xx_

	Bitmask used for full duplex ATR.

	
uint32_t atr_rx_

	Bitmask used for rx only ATR.

	
uint32_t atr_tx_

	Bitmask used for tx only ATR.

	
uint32_t atr_0x_

	Bitmask used for idle ATR.

	
uint32_t agc_st_

	Bitmask used for AGC signal.

	
uint32_t lo_pwr_

	Bitmask used for lo pwr signal.

	
uint32_t test_mode_

	Bitmask used for test mode signal.

	
float tx_rate_

	The tx rate in Hz.

	
float rx_rate_

	The rx rate in Hz.

	
uhd::tx_streamer::sptr tx_stream_

	

	
uhd::rx_streamer::sptr rx_stream_

	

	
class TXMetadata

	
#include <usrp.hpp>

Wrapper for the USRP TX metadata object.

Used to hold and initialize a new tx_metadata_t object. Creates getters and setters to access properties.

Public Functions

	
TXMetadata()

	Constructs a blank USRP TX metadata object.

	
uhd::tx_metadata_t get_md()

	Gets the TX metadata oject that can be sent the USRPs.

	Returns

	The USRP TX metadata.

	
void set_start_of_burst(bool start_of_burst)

	Sets whether this data is the start of a burst.

	Parameters

	start_of_burst – [in] The start of burst boolean.

	
void set_end_of_burst(bool end_of_burst)

	Sets whether this data is the end of the burst.

	Parameters

	end_of_burst – [in] The end of burst boolean.

	
void set_has_time_spec(bool has_time_spec)

	Sets whether this data will have a particular timing.

	Parameters

	has_time_spec – [in] Indicates if this metadata will have a time specifier.

	
void set_time_spec(uhd::time_spec_t time_spec)

	Sets the timing in the future for this metadata.

	Parameters

	time_spec – [in] The time specifier for this metadata.

Private Members

	
uhd::tx_metadata_t md_

	A raw USRP TX metadata object.

	
class RXMetadata

	
#include <usrp.hpp>

Wrapper for the USRP RX metadata object.

Used to hold and initialize a new tx_metadata_t object. Creates getters and setters to access properties.

Public Functions

	
RXMetadata() = default

	

	
uhd::rx_metadata_t &get_md()

	Gets the RX metadata object that will be retrieved on receiving.

	Returns

	The USRP RX metadata object.

	
bool get_end_of_burst()

	Gets the end of burst.

	Returns

	The end of burst.

	
uhd::rx_metadata_t::error_code_t get_error_code()

	Gets the error code from the metadata on receive.

	Returns

	The error code.

	
size_t get_fragment_offset()

	Gets the fragment offset. The fragment offset is the sample number at start of buffer.

	Returns

	The fragment offset.

	
bool get_has_time_spec()

	Gets the has time specifier status.

	Returns

	The has time specifier boolean.

	
bool get_out_of_sequence()

	Gets out of sequence status. Queries whether a packet is dropped or out of order.

	Returns

	The out of sequence boolean.

	
bool get_start_of_burst()

	Gets the start of burst status.

	Returns

	The start of burst.

	
uhd::time_spec_t get_time_spec()

	Gets the time specifier of the packet.

	Returns

	The time specifier.

Private Members

	
uhd::rx_metadata_t md_

	A raw USRP RX metadata object.

data_write package

The data_write package contains the utilities to parse protobuf packets containing antennas_iq data, bfiq data, rawacf data, etc and write that data to HDF5 or JSON files.

Submodules

experiment_prototype

This is the base module for all experiments. An experiment will only run if it
inherits from this class.

	copyright

	2018 SuperDARN Canada

	author

	Marci Detwiller

	
class experiment_prototype.experiment_prototype.ExperimentPrototype

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The base class for all experiments.

A prototype experiment class composed of metadata, including experiment slices (exp_slice)
which are dictionaries of radar parameters. Basic, traditional experiments will be composed of
a single slice. More complicated experiments will be composed of multiple slices that
interface in one of four pre-determined ways, as described under interface_types.

This class is used via inheritance to create experiments.

Some variables shouldn’t be changed by the experiment, and their properties do not have setters.
Some variables can be changed in the init of your experiment, and can also be modified
in-experiment by the class method ‘update’ in your experiment class. These variables have been
given property setters.

The following are the user-modifiable attributes of the ExperimentPrototype that are
used to make an experiment:

	xcf: boolean for cross-correlation data. A default can be set here for slices,
but any slice can override this setting with the xcf slice key.

	acf: boolean for auto-correlation data on main array. A default can be set here for slices,
but any slice can override this setting with the acf slice key.

	acfint: boolean for auto-correlation data on interferometer array. A default can be set here for slices,
but any slice can override this setting with the acfint slice key.

	slice_dict: modifiable only using the add_slice, edit_slice, and del_slice
methods.

	interface: modifiable using the add_slice, edit_slice, and del_slice
methods, or by updating the interface dict directly.

Other parameters are set in the init and cannot be modified after instantiation.

	
property acf

	The default auto-correlation flag boolean.

This provides the default for slices where this key isn’t specified.

	
property acfint

	The default interferometer autocorrelation boolean.

This provides the default for slices where this key isn’t specified.

	
add_slice(exp_slice, interfacing_dict={})

	Add a slice to the experiment.

	Parameters

	
	exp_slice – a slice (dictionary of slice_keys) to add to the experiment.

	interfacing_dict – dictionary of type {slice_id : INTERFACING , … } that
defines how this slice interacts with all the other slices currently in the
experiment.

	Raises

	ExperimentException if slice is not a dictionary or if there are
errors in setup_slice.

	Returns

	the slice_id of the new slice that was just added.

	
build_scans()

	Build the scan information, which means creating the Scan, AveragingPeriod, and
Sequence instances needed to run this experiment.

Will be run by experiment handler, to build iterable objects for radar_control to
use. Creates scan_objects in the experiment for identifying which slices are in the scans.

	
check_new_slice_interfacing(interfacing_dict)

	Checks that the new slice plays well with its siblings (has interfacing
that is resolvable). If so, returns a new dictionary with all interfacing
values set.

The interfacing assumes that the interfacing_dict given by the user defines
the closest interfacing of the new slice with a slice. For example,
if the slice is to be PULSE combined with slice 0, the interfacing dict
should provide this information. If only ‘SCAN’ interfacing with slice 1
is provided, then that will be assumed to be the closest and therefore
the interfacing with slice 0 will also be ‘SCAN’.

If no interfacing_dict is provided for a slice, the default
is to do ‘SCAN’ type interfacing for the new slice with all other slices.

	Parameters

	interfacing_dict – the user-provided interfacing dict, which may
be empty or incomplete. If empty, all interfacing is assumed to be =
‘SCAN’ type. If it contains something, we ensure that the interfacing provided
makes sense with the values already known for its closest sibling.

	Returns

	full interfacing dictionary.

	Raises

	ExperimentException if invalid interface types provided
or if interfacing can not be resolved.

	
check_slice(exp_slice)

	Check the slice for errors.

This is the first test of the dictionary in the experiment done to ensure values in this
slice make sense. This is a self-check to ensure the parameters (for example, txfreq,
antennas) are appropriate. All fields should be full at this time (whether filled by the
user or given default values in set_slice_defaults). This was built to be useable at
any time after setup.
:param: exp_slice: a slice to check
:raise: ExperimentException: When necessary parameters do not exist or = None (would have
to have been overridden by the user for this, as defaults all set when this runs).

	
check_slice_minimum_requirements(exp_slice)

	Check the required slice keys.

Check for the minimum requirements of the slice. The following keys are always required:
“pulse_sequence”, “tau_spacing”, “pulse_len”, “num_ranges”, “first_range”, (one of “intt” or “intn”),
“beam_angle”, and “beam_order”. This function may modify the values in this slice dictionary
to ensure that it is able to be run and that the values make sense.

	Parameters

	exp_slice – slice to check.

	
check_slice_specific_requirements(exp_slice)

	Set the specific slice requirements depending.

Check the requirements for the specific slice type as identified by the
identifiers rxonly and clrfrqflag. The keys that need to be checked depending
on these identifiers are “txfreq”, “rxfreq”, and “clrfrqrange”. This function
may modify these keys.

	Parameters

	exp_slice – the slice to check, before adding to the experiment.

	
property comment_string

	A string related to the experiment, to be placed in the experiment’s files.

This is read-only once established in instantiation.

	
property cpid

	This experiment’s CPID (control program ID, a term that comes from ROS).

The CPID is read-only once established in instantiation. It may be
modified at runtime by the set_scheduling_mode function, to set it to
a negative value during discretionary time.

	
property decimation_scheme

	The decimation scheme, of type DecimationScheme from the filtering module. Includes all
filtering and decimating information for the signal processing module.

This is read-only once established in instantiation.

	
del_slice(remove_slice_id)

	Remove a slice from the experiment.

	Parameters

	remove_slice_id – the id of the slice you’d like to remove.

	Returns

	a copy of the removed slice.

	Raises

	exception if remove_slice_id does not exist in the slice dictionary.

	
edit_slice(edit_slice_id, **kwargs)

	Edit a slice.

A quick way to edit a slice. In reality this is actually adding a new slice and
deleting the old one. Useful for quick changes. Note that using this function
will remove the slice_id that you are changing and will give it a new id. It will
account for this in the interfacing dictionary.

	Parameters

	
	edit_slice_id – the slice id of the slice to be edited.

	kwargs – dictionary of slice parameter to slice value that you want to
change.

	Returns new_slice_id

	the new slice id of the edited slice, or the edit_slice_id
if no change has occurred due to failure of new slice parameters to pass experiment
checks.

	Raises

	exceptions if the edit_slice_id does not exist in slice dictionary or
the params or values do not make sense.

	
property experiment_name

	The experiment class name.

	
get_scan_slice_ids()

	Organize the slice_ids by scan.

Take my own interfacing and get info on how many scans and which slices make which
scans. Return a list of lists where each inner list contains the slices that
are in an averagingperiod that is inside this scan. ie. len(nested_slice_list)
= # of averagingperiods in this scan, len(nested_slice_list[0]) = # of slices
in the first averagingperiod, etc.

:return list of lists. The list has one element per scan. Each element is a list
of slice_ids signifying which slices are combined inside that scan. The list
returned could be of length 1, meaning only one scan is present in the experiment.

	
get_slice_interfacing(slice_id)

	Check the experiment’s interfacing dictionary for all interfacing that pertains to a
given slice, and return the interfacing information in a dictionary.
:param slice_id: Slice ID to search the interface dictionary for.
:return: interfacing dictionary for the slice.

	
property interface

	The dictionary of interfacing for the experiment slices.

Interfacing should be set up for any slice when it gets added, ie. in add_slice,
except for the first slice added. The dictionary of interfacing is setup as:

[(slice_id1, slice_id2) : INTERFACING_TYPE,
(slice_id1, slice_id3) : INTERFACING_TYPE,
…]

for all current slice_ids.

	
property new_slice_id

	The next unique slice id that is available to this instance of the experiment.

This gets incremented each time it is called to ensure it returns
a unique ID each time.

	
property num_slices

	The number of slices currently in the experiment.

Will change after methods add_slice or del_slice are called.

	
property options

	The config options for running this experiment.

These cannot be set or removed, but are specified in the config.ini, hdw.dat, and
restrict.dat files.

	
property output_rx_rate

	The output receive rate of the data, Hz.

This is read-only once established in instantiation.

	
printing(msg)

	

	
property rx_bandwidth

	The receive bandwidth for this experiment, in Hz.

This is read-only once established in instantiation.

	
property rx_maxfreq

	The maximum receive frequency.

This is the maximum tx frequency possible in this experiment (maximum given by the center
frequency and sampling rate), as license doesn’t matter for receiving. The maximum is
slightly less than that allowed by the center frequency and rxrate, to stay away from the
edges of the possible receive band where the signal may be distorted.

	
property rx_minfreq

	The minimum receive frequency.

This is the minimum rx frequency possible in this experiment (minimum given by the center
frequency and sampling rate) - license doesn’t restrict receiving. The minimum is
slightly more than that allowed by the center frequency and rxrate, to stay away from the
edges of the possible receive band where the signal may be distorted.

	
property rxctrfreq

	The receive center frequency that USRP is tuned to (kHz).

	
property rxrate

	The receive bandwidth for this experiment, or the receive sampling rate (of I and Q samples)
In Hz.

This is read-only once established in instantiation.

	
property scan_objects

	The list of instances of class Scan for use in radar_control.

These cannot be modified by the user, but are created using the slice dictionary.

	
property scheduling_mode

	Return the scheduling mode time type that this experiment is running
in. Types are listed in possible_scheduling_modes. Initialized to
‘unknown’ until set by the experiment handler.

	
self_check()

	Check that the values in this experiment are valid.

Checks all slices.

	
set_slice_defaults(exp_slice)

	Set up defaults in case of some parameters being left blank.

	Parameters

	exp_slice – slice to set defaults of

	Returns slice_with_defaults

	updated slice

	
static set_slice_identifiers(exp_slice)

	Set the hidden slice keys to determine how to run the slice.

This function sets up internal identifier flags ‘clrfrqflag’ and ‘rxonly’ in the slice so
that we know how to properly set up the slice and know which keys in the slice must be
specified and which are unnecessary. If these keys are ever written by the user, they will
be rewritten here.

	Parameters

	exp_slice – slice in which to set identifiers

	
setup_slice(exp_slice)

	Check slice for errors and set defaults of optional keys.

Before adding the slice, ensure that the internal parameters are set, remove unnecessary
keys and check values of keys that are needed, and set defaults of keys that are optional.

The following are always able to be defaulted, so are optional:
“tx_antennas”, “rx_main_antennas”, “rx_int_antennas”, “pulse_phase_offset”, “scanboundflag”,
“scanbound”, “acf”, “xcf”, “acfint”, “wavetype”, “seqoffset”, “averaging_method”

The following are always required for processing acf, xcf, and acfint which we will assume
we are always doing:
“pulse_sequence”, “tau_spacing”, “pulse_len”, “num_ranges”, “first_range”, “intt”, “intn”, “beam_angle”,
“beam_order”

The following are required depending on slice type:
“txfreq”, “rxfreq”, “clrfrqrange”

	Param

	exp_slice: a slice to setup

	Returns

	complete_slice : a checked slice with all defaults

	
slice_beam_directions_mapping(slice_id)

	A mapping of the beam directions in the given slice id.

	Parameters

	slice_id – id of the slice to get beam directions for.

	Returns mapping

	enumeration mapping dictionary of beam number to beam
direction(s) in degrees off boresight.

	
property slice_dict

	The dictionary of slices.

The slice dictionary can be updated in add_slice, edit_slice, and del_slice. The slice
dictionary is a dictionary of dictionaries that looks like:

{ slice_id1 : {slice_key1 : x, slice_key2 : y, …},
slice_id2 : {slice_key1 : x, slice_key2 : y, …},
…}

	
property slice_ids

	The list of slice ids that are currently available in this experiment.

This can change when add_slice, edit_slice, and del_slice are called.

	
property slice_keys

	The list of slice keys available.

This cannot be updated. These are the keys in the current ExperimentPrototype
slice_keys dictionary (the parameters available for slices).

	
property transmit_metadata

	A dictionary of config options and experiment-set values that cannot change in the
experiment, that will be used to build pulse sequences.

	
property tx_bandwidth

	The transmission sample rate to the DAC (Hz), and the transmit bandwidth.

This is read-only once established in instantiation.

	
property tx_maxfreq

	The maximum transmit frequency.

This is the maximum tx frequency possible in this experiment (either maximum in our license
or maximum given by the center frequency, and sampling rate). The maximum is slightly less
than that allowed by the center frequency and txrate, to stay away from the edges of the
possible transmission band where the signal is distorted.

	
property tx_minfreq

	The minimum transmit frequency.

This is the minimum tx frequency possible in this experiment (either minimum in our license
or minimum given by the center frequency and sampling rate). The minimum is slightly more
than that allowed by the center frequency and txrate, to stay away from the edges of the
possible transmission band where the signal is distorted.

	
property txctrfreq

	The transmission center frequency that USRP is tuned to (kHz).

	
property txrate

	The transmission sample rate to the DAC (Hz).

This is read-only once established in instantiation.

	
property xcf

	The default cross-correlation flag boolean.

This provides the default for slices where this key isn’t specified.

	
experiment_prototype.experiment_prototype.hidden_key_set = frozenset({'clrfrqflag', 'rxonly', 'slice_interfacing'})

	These are used by the build_scans method (called from the experiment_handler every
time the experiment is run). If set by the user, the values will be overwritten and
therefore ignored.

	
experiment_prototype.experiment_prototype.interface_types = ('SCAN', 'INTTIME', 'INTEGRATION', 'PULSE')

	The types of interfacing available for slices in the experiment.

Interfacing in this case refers to how two or more components are
meant to be run together. The following types of interfacing are possible:

1. SCAN.
The scan by scan interfacing allows for slices to run a scan of one slice,
followed by a scan of the second. The scan mode of interfacing typically
means that the slice will cycle through all of its beams before switching
to another slice.

There are no requirements for slices interfaced in this manner.

2. INTTIME.
This type of interfacing allows for one slice to run its integration period
(also known as integration time or averaging period), before switching to
another slice’s integration period. This type of interface effectively creates
an interleaving scan where the scans for multiple slices are run ‘at the same
time’, by interleaving the integration times.

	Slices which are interfaced in this manner must share:
	
	the same SCANBOUND value.

3. INTEGRATION.
Integration interfacing allows for pulse sequences defined in the slices to
alternate between each other within a single integration period. It’s important
to note that data from a single slice is averaged only with other data from that
slice. So in this case, the integration period is running two slices and can
produce two averaged datasets, but the sequences (integrations) within the
integration period are interleaved.

	Slices which are interfaced in this manner must share:
	
	the same SCANBOUND value.

	the same INTT or INTN value.

	the same BEAM_ORDER length (scan length)

4. PULSE.
Pulse interfacing allows for pulse sequences to be run together concurrently.
Slices will have their pulse sequences summed together so that the
data transmits at the same time. For example, slices of different frequencies
can be mixed simultaneously, and slices of different pulse sequences can also
run together at the cost of having more blanked samples. When slices are
interfaced in this way the radar is truly transmitting and receiving the
slices simultaneously.

	Slices which are interfaced in this manner must share:
	
	the same SCANBOUND value.

	the same INTT or INTN value.

	the same BEAM_ORDER length (scan length)

	
experiment_prototype.experiment_prototype.slice_key_set = frozenset({'acf', 'acfint', 'averaging_method', 'beam_angle', 'beam_order', 'clrfrqrange', 'comment', 'cpid', 'first_range', 'intn', 'intt', 'iwavetable', 'lag_table', 'num_ranges', 'pulse_len', 'pulse_phase_offset', 'pulse_sequence', 'qwavetable', 'range_sep', 'rx_int_antennas', 'rx_main_antennas', 'rxfreq', 'scanbound', 'seqoffset', 'slice_id', 'tau_spacing', 'tx_antennas', 'txfreq', 'wavetype', 'xcf'})

	These are the keys that are set by the user when initializing a slice. Some
are required, some can be defaulted, and some are set by the experiment
and are read-only.

Slice Keys Required by the User

	pulse_sequence required
	The pulse sequence timing, given in quantities of tau_spacing, for example
normalscan = [0, 14, 22, 24, 27, 31, 42, 43].

	tau_spacing required
	multi-pulse increment (mpinc) in us, Defines minimum space between pulses.

	pulse_len required
	length of pulse in us. Range gate size is also determined by this.

	num_ranges required
	Number of range gates.

	first_range required
	first range gate, in km

	intt required or intn required
	duration of an integration, in ms. (maximum)

	intn required or intt required
	number of averages to make a single integration, only used if intt = None.

	beam_angle required
	list of beam directions, in degrees off azimuth. Positive is E of N. The beam_angle list
length = number of beams. Traditionally beams have been 3.24 degrees separated but we
don’t refer to them as beam -19.64 degrees, we refer as beam 1, beam 2. Beam 0 will
be the 0th element in the list, beam 1 will be the 1st, etc. These beam numbers are
needed to write the beam_order list. This is like a mapping of beam number (list
index) to beam direction off boresight.

	beam_order required
	beam numbers written in order of preference, one element in this list corresponds to
one integration period. Can have lists within the list, resulting in multiple beams
running simultaneously in the averaging period, so imaging. A beam number of 0 in
this list gives us the direction of the 0th element in the beam_angle list. It is
up to the writer to ensure their beam pattern makes sense. Typically beam_order is
just in order (scanning W to E or E to W, ie. [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15]. You can list numbers multiple times in the beam_order list,
for example [0, 1, 1, 2, 1] or use multiple beam numbers in a single
integration time (example [[0, 1], [3, 4]], which would trigger an imaging
integration. When we do imaging we will still have to quantize the directions we
are looking in to certain beam directions.

	clrfrqrange required or txfreq or rxfreq required
	range for clear frequency search, should be a list of length = 2, [min_freq, max_freq]
in kHz. Not currently supported.

	txfreq required or clrfrqrange or rxfreq required
	transmit frequency, in kHz. Note if you specify clrfrqrange it won’t be used.

	rxfreq required or clrfrqrange or txfreq required
	receive frequency, in kHz. Note if you specify clrfrqrange or txfreq it won’t be used. Only
necessary to specify if you want a receive-only slice.

Defaultable Slice Keys

	acf defaults
	flag for rawacf and generation. The default is False. If True, the following fields are
also used:
- averaging_method (default ‘mean’)
- xcf (default True if acf is True)
- acfint (default True if acf is True)
- lagtable (default built based on all possible pulse combos)
- range_sep (will be built by pulse_len to verify any provided value)

	acfint defaults
	flag for interferometer autocorrelation data. The default is True if acf is True, otherwise
False.

	averaging_method defaults
	a string defining the type of averaging to be done. Current methods are ‘mean’ or ‘median’.
The default is ‘mean’.

	comment defaults
	a comment string that will be placed in the borealis files describing the slice. Defaults
to empty string.

	lag_table defaults
	used in acf calculations. It is a list of lags. Example of a lag: [24, 27] from
8-pulse normalscan. This defaults to a lagtable built by the pulse sequence
provided. All combinations of pulses will be calculated, with both the first pulses
and last pulses used for lag-0.

	pulse_phase_offset defaults
	Allows phase shifting of pulses, enabling encoding of pulses. Default all
zeros for all pulses in pulse_sequence. Pulses can be shifted with a single
phase shift for each pulse or with a phase shift specified for each sample
in the pulses of the slice.

	range_sep defaults
	a calculated value from pulse_len. If already set, it will be overwritten to be the correct
value determined by the pulse_len. Used for acfs. This is the range gate separation,
in azimuthal direction, in km.

	rx_int_antennas defaults
	The antennas to receive on in interferometer array, default is all
antennas given max number from config.

	rx_main_antennas defaults
	The antennas to receive on in main array, default is all antennas
given max number from config.

	scanbound defaults
	A list of seconds past the minute for integration times in a scan to align to. Defaults
to None, not required.

	seqoffset defaults
	offset in us that this slice’s sequence will begin at, after the start of the sequence.
This is intended for PULSE interfacing, when you want multiple slice’s pulses in one sequence
you can offset one slice’s sequence from the other by a certain time value so as to not run both
frequencies in the same pulse, etc. Default is 0 offset.

	tx_antennas defaults
	The antennas to transmit on, default is all main antennas given max
number from config.

	xcf defaults
	flag for cross-correlation data. The default is True if acf is True, otherwise False.

Read-only Slice Keys

	clrfrqflag read-only
	A boolean flag to indicate that a clear frequency search will be done.
Not currently supported.

	cpid read-only
	The ID of the experiment, consistent with existing radar control programs.
This is actually an experiment-wide attribute but is stored within the
slice as well. This is provided by the user but not within the slice,
instead when the experiment is initialized.

	rx_only read-only
	A boolean flag to indicate that the slice doesn’t transmit, only receives.

	slice_id read-only
	The ID of this slice object. An experiment can have multiple slices. This
is not set by the user but instead set by the experiment when the
slice is added. Each slice id within an experiment is unique. When experiments
start, the first slice_id will be 0 and incremented from there.

	slice_interfacing read-only
	A dictionary of slice_id : interface_type for each sibling slice in the
experiment at any given time.

Not currently supported and will be removed

	wavetype defaults
	string for wavetype. The default is SINE. Not currently supported.

	iwavetable defaults
	a list of numeric values to sample from. The default is None. Not currently supported
but could be set up (with caution) for non-SINE. Not currently supported.

	qwavetable defaults
	a list of numeric values to sample from. The default is None. Not currently supported
but could be set up (with caution) for non-SINE. Not currently supported.

experiment_exception

This is the exception that is raised when there are problems with the experiment that
cannot be remedied using experiment_prototype methods.

	copyright

	2018 SuperDARN Canada

	author

	Marci Detwiller

	
exception experiment_prototype.experiment_exception.ExperimentException(message, *args)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Is raised for the exception where an experiment cannot be run due to setup errors.

list_tests

Basic tests for use in checking slices.

	copyright

	2018 SuperDARN Canada

	author

	Marci Detwiller

	
experiment_prototype.list_tests.has_duplicates(list_to_check)

	Check if the list has duplicate values.

	Parameters

	list_to_check – A list to check.

	Returns

	boolean True if duplicates exist, False if not.

	
experiment_prototype.list_tests.is_increasing(list_to_check)

	Check if list is increasing.

	Parameters

	list_to_check – a list of numbers

	Returns

	boolean True if is increasing, False if not.

Subpackages

	experiment_prototype.scan_classes package
	scan_class_base

	ScanClassBase
	ScanClassBase.prep_for_nested_scan_class()

	ScanClassBase.slice_combos_sorter()

	scans

	Scan
	Scan.get_inttime_slice_ids()

	Scan.prep_for_nested_scan_class()

	averaging_periods

	AveragingPeriod
	AveragingPeriod.build_sequences()

	AveragingPeriod.get_sequence_slice_ids()

	AveragingPeriod.set_beamdirdict()

	sequences

	Sequence
	Sequence.build_pulse_transmit_data()

	Sequence.find_blanks()

experiment_prototype.scan_classes package

scan_class_base

This is the base module for all ScanClassBase types (iterable for an experiment
given certain parameters). These types include the Scan class, the AveragingPeriod
class, and the Sequence class.

	copyright

	2018 SuperDARN Canada

	author

	Marci Detwiller

	
class experiment_prototype.scan_classes.scan_class_base.ScanClassBase(object_keys, object_slice_dict, object_interface, transmit_metadata)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The base class for the classes Scan, AveragingPeriod, and Sequence.

Scans are made up of AveragingPeriods, these are typically a 3sec time of
the same pulse sequence pointing in one direction. AveragingPeriods are made
up of Sequences, typically the same sequence run ave. 20-30 times after a clear
frequency search. Sequences are made up of pulses, which is a list of dictionaries
where each dictionary describes a pulse.

	Parameters

	
	object_keys – list of slice_ids that need to be included in this
scan_class_base type.

	object_slice_dict – the slice dictionary that explains the parameters of each
slice that is included in this scan_class_base type. Keys are the slice_ids included
and values are dictionaries including all necessary slice parameters as keys.

	object_interface – the interfacing dictionary that describes how to interface the
slices that are included in this scan_class_base type. Keys are tuples of format
(slice_id_1, slice_id_2) and values are of interface_types set up in
experiment_prototype.

	transmit_metadata – a dictionary of the experiment-wide transmit metadata for building

	pulse sequences. The keys of the transmit_metadata are:
	‘output_rx_rate’ [Hz],
‘main_antenna_count’,
‘tr_window_time’ [s],
‘main_antenna_spacing’ [m],
‘pulse_ramp_time’ [s],
‘max_usrp_dac_amplitude’ [V peak],
‘rx_sample_rate’ [Hz],
‘minimum_pulse_separation’ [us],
‘txctrfreq’ [kHz],
‘txrate’ [Hz]

	
prep_for_nested_scan_class()

	Retrieve the params needed for the nested class (also with base ScanClassBase).

This class reduces duplicate code by breaking down the ScanClassBase class into
the separate portions for the nested instances. For Scan class, the nested class
is AveragingPeriod, and we will need to break down the parameters given to the
Scan instance because there may be multiple AveragingPeriods within. For
AveragingPeriod, the nested class is Sequence.

	Returns

	params for the nested class’s instantiation.

	
static slice_combos_sorter(list_of_combos, all_keys)

	Sort keys of a list of combinations so that keys only appear once in the list.

This function modifes the input list_of_combos so that all slices that are
associated are associated in the same list. For example, if input is
list_of_combos = [[0,1], [0,2], [0,4], [1,4], [2,4]] and all_keys = [0,1,2,4,5]
then the output should be [[0,1,2,4], [5]]. This is used to get the slice
dictionary for nested class instances. In the above example, we would then have
two instances of the nested class to create: one with slices 0,1,2,4 and another
with slice 5.

	Parameters

	
	list_of_combos – list of lists of length two associating two slices
together.

	all_keys – list of all keys included in this object (scan, ave_period, or
sequence).

	Returns

	list of combos that is sorted so that each key only appears once and
the lists within the list are of however long necessary

scans

This is the module containing the Scan class. The Scan class contains the
ScanClassBase members, as well as a scanbound (to be implemented), a beamdir
dictionary and scan_beams dictionary which specify beam direction angle and beam
order in a scan, respectively, for individual slices that are to be combined in this
scan. Beam direction information gets passed on to the AveragingPeriod.

	copyright

	2018 SuperDARN Canada

	author

	Marci Detwiller

	
class experiment_prototype.scan_classes.scans.Scan(scan_keys, scan_slice_dict, scan_interface, transmit_metadata)

	Bases: ScanClassBase

Set up the scans.

A scan is made up of AveragingPeriods at defined beam directions, and some other
metadata for the scan itself.

The unique members of the scan are (not a member of the scanclassbase):

	scanbound
	A list of seconds past the minute for scans to align to.

	
get_inttime_slice_ids()

	Return the slice_ids that are within the AveragingPeriods in this Scan instance.

Take the interface keys inside this scan and return a list of lists
where each inner list contains the slices that are in an averagingperiod that is
inside this scan. ie. len(nested_slice_list) = # of averagingperiods in this
scan, len(nested_slice_list[0]) = # of slices in the first averagingperiod,
etc.

	Returns

	the nested_slice_list which is used when creating the
AveragingPeriods for this scan.

	
prep_for_nested_scan_class()

	Override of base method to give more information about beamorder and beamdir.

Beam order and beamdir are required for instantiation of the nested class
AveragingPeriod so we need to extract this information as well to fill
self.aveperiods.

	Returns

	a list of lists of parameters that can be directly passed into the
nested ScanClassBase type, AveragingPeriod. the params_list is of length = # of
AveragingPeriods in this scan.

averaging_periods

This is the module containing the AveragingPeriod class. The AveragingPeriod class
contains the ScanClassBase members, as well as clrfrqflag (to be implemented),
intn (number of integrations to run), or intt(max time for integrations),
and it contains sequences of class Sequence.

	copyright

	2018 SuperDARN Canada

	author

	Marci Detwiller

	
class experiment_prototype.scan_classes.averaging_periods.AveragingPeriod(ave_keys, ave_slice_dict, ave_interface, transmit_metadata, slice_to_beamorder_dict, slice_to_beamdir_dict)

	Bases: ScanClassBase

Set up the AveragingPeriods.

An averagingperiod contains sequences and integrates one or multiple pulse sequences
together in a given time frame or in a given number of averages, if that is the
preferred limiter.

The unique members of the averagingperiod are (not a member of the scanclassbase):

	slice_to_beamorder
	passed in by the scan that this AveragingPeriod instance is contained in. A
dictionary of slice: beam_order for all slices contained in this aveperiod.

	slice_to_beamdir
	passed in by the scan that this AveragingPeriod instance is contained in. A
dictionary of slice: beamdir(s) for all slices contained in this aveperiod.

	clrfrqflag
	Boolean, True if clrfrqsearch should be performed.

	clrfrqrange
	The range of frequency to search if clrfrqflag is True. Otherwise empty.

	intt
	The priority limitation. The time limit (ms) at which time the aveperiod will
end. If None, we will use intn to end the aveperiod (a number of sequences).

	intn
	Number of averages (# of times the sequence transmits) to end after for the
averagingperiod.

	sequences
	The list of sequences included in this aveperiod. This does not indicate how
many averages will be transmitted in the aveperiod. If there are multiple
sequences in the list, they will be alternated between until the end of the
aveperiod.

	one_pulse_only
	boolean, True if this averaging period only has one unique set of pulse samples in it.
This is true if there is only one sequence in the averaging period, and all pulses after the
first pulse in the sequence have the isarepeat key = True. This boolean can be used to
speed up the process of sending data to the driver which means we can get more averages
in less time.

	
build_sequences(slice_to_beamdir_dict)

	Build a list of sequences to iterate through when transmitting.

This includes building all pulses within the sequences, so it then contains all
pulse samples data to iterate through when transmitting. If there is only one
sequence type in the averaging period, this list will be of length 1. That
would mean that that one sequence gets repeated throughout the averagingperiod
(intn and intt still apply).

	Returns

	sequence_dict_list, list of lists of pulse dictionaries.

	
get_sequence_slice_ids()

	Return the slice_ids that are within the Sequences in this AveragingPeriod
instance.

Take the interface keys inside this averagingperiod and return a list of lists
where each inner list contains the slices that are in a sequence that is inside
this averagingperiod. ie. len(nested_slice_list) = # of sequences in this
averagingperiod, len(nested_slice_list[0]) = # of slices in the first sequence,
etc.

	Returns

	the nested_slice_list which is used when creating the sequences in
this averagingperiod.

	
set_beamdirdict(beamiter)

	Get a dictionary of ‘slice_id’ : ‘beamdir(s)’ for this averaging period.

At a given beam iteration, this averagingperiod instance will select the beam
directions that it will shift to.

	Parameters

	beamiter – the index into the beam_order list, or the index of an averaging
period into the scan

	Returns

	dictionary of slice to beamdir where beamdir is always a list (may be
of length one though). Beamdir is azimuth angle.

sequences

This is the module containing the Sequence class. The Sequence class contains the
ScanClassBase members, as well as a list of pulse dictionaries,
the total_combined_pulses in the sequence, power_divider, last_pulse_len, ssdelay,
seqtime, which together give sstime (scope synce time, or time for receiving,
and numberofreceivesamples to sample during the receiving window (calculated using
the receive sampling rate).

	copyright

	2018 SuperDARN Canada

	author

	Marci Detwiller

	
class experiment_prototype.scan_classes.sequences.Sequence(seqn_keys, sequence_slice_dict, sequence_interface, transmit_metadata)

	Bases: ScanClassBase

Set up the sequence class.

The members of the sequence are:

	pulses
	a list of pre-combined, pre-sampled pulse dictionaries (one dictionary = one
basic pulse of single frequency). The dictionary keys are: isarepeat,
pulse_timing_us, slice_id, slice_pulse_index, pulse_len,
intra_pulse_start_time, combined_pulse_index, pulse_shift, iscombined,
combine_total, and combine_index.

	total_combined_pulses
	the total number of pulses to be sent by the driver. This may not
be the sum of pulses in all slices in the sequence, as some pulses may need to be
combined because they are overlapping in timing. This is the number of pulses in the
combined sequence, or the number of times T/R signal goes high in the sequence.

	power_divider
	the power ratio per slice. If there are multiple slices in the same
pulse then we must reduce the output amplitude to potentially accommodate multiple
frequencies.

	last_pulse_len
	the length of the last pulse (us)

	ssdelay
	delay past the end of the sequence to receive for (us) - function of num_ranges and
pulse_len. ss stands for scope sync.

	seqtime
	the amount of time for the whole sequence to transmit, until the logic signal
switches low on the last pulse in the sequence (us).

	sstime
	ssdelay + seqtime (total time for receiving) (us).

	numberofreceivesamples
	the number of receive samples to take, given the rx rate, during
the sstime.

	first_rx_sample_time
	The location of the first sample for the RX data, in time, from the start of the TX data.
This will be calculated as the time at center sample of the first pulse. In seconds.

	blanks
	A list of sample indices that should not be used for acfs because they were samples
taken when transmitting.

Pulses is a list of pulse dictionaries. The pulse dictionary keys are:

	isarepeat
	Boolean, True if the pulse is exactly the same as the last pulse in the sequence.

	pulse_timing_us
	The time past the start of sequence for this pulse to start at (us).

	slice_id
	The slice_id that corresponds to this pulse and gives the information about the
experiment and pulse information (frequency, num_ranges, first_range, etc.).

	slice_pulse_index
	The index of the pulse in its own slice’s sequence.

	pulse_len
	The length of the pulse (us)

	intra_pulse_start_time
	If the pulse is combined with another pulse and they transmit in a single USRP
burst, then we need to know if there is an offset from one pulse’s samples being
sent and the other pulse’s samples being sent.

	combined_pulse_index
	The combined_pulse_index is the index corresponding with actual number of pulses
that will be sent to driver, after combinations are completed. Multiple pulse
dictionaries in self.pulses can have the same combined_pulse_index if they are
combined together, ie are close enough in timing that T/R will not go low
between them, and we will combine the samples of both pulses into one set to
send to the driver.

	pulse_shift
	Phase shift for this pulse, for doing pulse coding.

	iscombined
	Boolean, true if there is another pulse with the same combined_pulse_index.

	combine_total
	Total number of pulse dictionaries that have the same combined_pulse_index as
this one. (minimum number = 1, itself).

	combine_index
	Index of this pulse dictionary in regards to all the other pulse dictionaries that
have the same combined_pulse_index.

	
build_pulse_transmit_data(slice_to_beamdir_dict)

	Build a list of ready-to-transmit pulse dictionaries (with samples) to send to
driver.

	Param

	slice_to_beamdir_dict: dictionary of slice id to beam direction(s) for
a single averaging period (i.e. if the list len > 1, we’re imaging).

	Returns sequence_list

	list of combined pulse dictionaries in correct order.
The keys in the ready-to-transmit pulse dictionary are:

	startofburst
	Boolean, True if this is the first pulse in the sequence.

	endofburst
	Boolean, True if this is the last pulse in the sequence.

	pulse_antennas
	The antennas to transmit on

	samples_array
	a list of arrays - each array corresponds to an antenna (the
samples are phased). All arrays are the same length for a single pulse on
that antenna. The length of the list is equal to main_antenna_count (all
samples are calculated). If we are not using an antenna, that index is a
numpy array of zeroes.

	timing
	The time to send the pulse at (past the start of sequence, us)

	isarepeat
	Boolean, True if this pulse is the same as the last pulse except for its
timing.

	
find_blanks()

	Sets the blanks. Must be run after first_rx_sample_time is set inside the
build_pulse_transmit_data function. Called from inside the build_pulse_transmit_data
function.

experiment_prototype package

The experiment_prototype package contains the building blocks of experiments, which includes the
ExperimentPrototype base class, the scan_classes subpackage including the ScanClassBase classes,
and the ExperimentException. There is also a list_tests module which is used by the
ExperimentPrototype class.

Submodules

experiment_prototype

This is the base module for all experiments. An experiment will only run if it
inherits from this class.

	copyright

	2018 SuperDARN Canada

	author

	Marci Detwiller

	
class experiment_prototype.experiment_prototype.ExperimentPrototype

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The base class for all experiments.

A prototype experiment class composed of metadata, including experiment slices (exp_slice)
which are dictionaries of radar parameters. Basic, traditional experiments will be composed of
a single slice. More complicated experiments will be composed of multiple slices that
interface in one of four pre-determined ways, as described under interface_types.

This class is used via inheritance to create experiments.

Some variables shouldn’t be changed by the experiment, and their properties do not have setters.
Some variables can be changed in the init of your experiment, and can also be modified
in-experiment by the class method ‘update’ in your experiment class. These variables have been
given property setters.

The following are the user-modifiable attributes of the ExperimentPrototype that are
used to make an experiment:

	xcf: boolean for cross-correlation data. A default can be set here for slices,
but any slice can override this setting with the xcf slice key.

	acf: boolean for auto-correlation data on main array. A default can be set here for slices,
but any slice can override this setting with the acf slice key.

	acfint: boolean for auto-correlation data on interferometer array. A default can be set here for slices,
but any slice can override this setting with the acfint slice key.

	slice_dict: modifiable only using the add_slice, edit_slice, and del_slice
methods.

	interface: modifiable using the add_slice, edit_slice, and del_slice
methods, or by updating the interface dict directly.

Other parameters are set in the init and cannot be modified after instantiation.

	
property acf

	The default auto-correlation flag boolean.

This provides the default for slices where this key isn’t specified.

	
property acfint

	The default interferometer autocorrelation boolean.

This provides the default for slices where this key isn’t specified.

	
add_slice(exp_slice, interfacing_dict={})

	Add a slice to the experiment.

	Parameters

	
	exp_slice – a slice (dictionary of slice_keys) to add to the experiment.

	interfacing_dict – dictionary of type {slice_id : INTERFACING , … } that
defines how this slice interacts with all the other slices currently in the
experiment.

	Raises

	ExperimentException if slice is not a dictionary or if there are
errors in setup_slice.

	Returns

	the slice_id of the new slice that was just added.

	
build_scans()

	Build the scan information, which means creating the Scan, AveragingPeriod, and
Sequence instances needed to run this experiment.

Will be run by experiment handler, to build iterable objects for radar_control to
use. Creates scan_objects in the experiment for identifying which slices are in the scans.

	
check_new_slice_interfacing(interfacing_dict)

	Checks that the new slice plays well with its siblings (has interfacing
that is resolvable). If so, returns a new dictionary with all interfacing
values set.

The interfacing assumes that the interfacing_dict given by the user defines
the closest interfacing of the new slice with a slice. For example,
if the slice is to be PULSE combined with slice 0, the interfacing dict
should provide this information. If only ‘SCAN’ interfacing with slice 1
is provided, then that will be assumed to be the closest and therefore
the interfacing with slice 0 will also be ‘SCAN’.

If no interfacing_dict is provided for a slice, the default
is to do ‘SCAN’ type interfacing for the new slice with all other slices.

	Parameters

	interfacing_dict – the user-provided interfacing dict, which may
be empty or incomplete. If empty, all interfacing is assumed to be =
‘SCAN’ type. If it contains something, we ensure that the interfacing provided
makes sense with the values already known for its closest sibling.

	Returns

	full interfacing dictionary.

	Raises

	ExperimentException if invalid interface types provided
or if interfacing can not be resolved.

	
check_slice(exp_slice)

	Check the slice for errors.

This is the first test of the dictionary in the experiment done to ensure values in this
slice make sense. This is a self-check to ensure the parameters (for example, txfreq,
antennas) are appropriate. All fields should be full at this time (whether filled by the
user or given default values in set_slice_defaults). This was built to be useable at
any time after setup.
:param: exp_slice: a slice to check
:raise: ExperimentException: When necessary parameters do not exist or = None (would have
to have been overridden by the user for this, as defaults all set when this runs).

	
check_slice_minimum_requirements(exp_slice)

	Check the required slice keys.

Check for the minimum requirements of the slice. The following keys are always required:
“pulse_sequence”, “tau_spacing”, “pulse_len”, “num_ranges”, “first_range”, (one of “intt” or “intn”),
“beam_angle”, and “beam_order”. This function may modify the values in this slice dictionary
to ensure that it is able to be run and that the values make sense.

	Parameters

	exp_slice – slice to check.

	
check_slice_specific_requirements(exp_slice)

	Set the specific slice requirements depending.

Check the requirements for the specific slice type as identified by the
identifiers rxonly and clrfrqflag. The keys that need to be checked depending
on these identifiers are “txfreq”, “rxfreq”, and “clrfrqrange”. This function
may modify these keys.

	Parameters

	exp_slice – the slice to check, before adding to the experiment.

	
property comment_string

	A string related to the experiment, to be placed in the experiment’s files.

This is read-only once established in instantiation.

	
property cpid

	This experiment’s CPID (control program ID, a term that comes from ROS).

The CPID is read-only once established in instantiation. It may be
modified at runtime by the set_scheduling_mode function, to set it to
a negative value during discretionary time.

	
property decimation_scheme

	The decimation scheme, of type DecimationScheme from the filtering module. Includes all
filtering and decimating information for the signal processing module.

This is read-only once established in instantiation.

	
del_slice(remove_slice_id)

	Remove a slice from the experiment.

	Parameters

	remove_slice_id – the id of the slice you’d like to remove.

	Returns

	a copy of the removed slice.

	Raises

	exception if remove_slice_id does not exist in the slice dictionary.

	
edit_slice(edit_slice_id, **kwargs)

	Edit a slice.

A quick way to edit a slice. In reality this is actually adding a new slice and
deleting the old one. Useful for quick changes. Note that using this function
will remove the slice_id that you are changing and will give it a new id. It will
account for this in the interfacing dictionary.

	Parameters

	
	edit_slice_id – the slice id of the slice to be edited.

	kwargs – dictionary of slice parameter to slice value that you want to
change.

	Returns new_slice_id

	the new slice id of the edited slice, or the edit_slice_id
if no change has occurred due to failure of new slice parameters to pass experiment
checks.

	Raises

	exceptions if the edit_slice_id does not exist in slice dictionary or
the params or values do not make sense.

	
property experiment_name

	The experiment class name.

	
get_scan_slice_ids()

	Organize the slice_ids by scan.

Take my own interfacing and get info on how many scans and which slices make which
scans. Return a list of lists where each inner list contains the slices that
are in an averagingperiod that is inside this scan. ie. len(nested_slice_list)
= # of averagingperiods in this scan, len(nested_slice_list[0]) = # of slices
in the first averagingperiod, etc.

:return list of lists. The list has one element per scan. Each element is a list
of slice_ids signifying which slices are combined inside that scan. The list
returned could be of length 1, meaning only one scan is present in the experiment.

	
get_slice_interfacing(slice_id)

	Check the experiment’s interfacing dictionary for all interfacing that pertains to a
given slice, and return the interfacing information in a dictionary.
:param slice_id: Slice ID to search the interface dictionary for.
:return: interfacing dictionary for the slice.

	
property interface

	The dictionary of interfacing for the experiment slices.

Interfacing should be set up for any slice when it gets added, ie. in add_slice,
except for the first slice added. The dictionary of interfacing is setup as:

[(slice_id1, slice_id2) : INTERFACING_TYPE,
(slice_id1, slice_id3) : INTERFACING_TYPE,
…]

for all current slice_ids.

	
property new_slice_id

	The next unique slice id that is available to this instance of the experiment.

This gets incremented each time it is called to ensure it returns
a unique ID each time.

	
property num_slices

	The number of slices currently in the experiment.

Will change after methods add_slice or del_slice are called.

	
property options

	The config options for running this experiment.

These cannot be set or removed, but are specified in the config.ini, hdw.dat, and
restrict.dat files.

	
property output_rx_rate

	The output receive rate of the data, Hz.

This is read-only once established in instantiation.

	
printing(msg)

	

	
property rx_bandwidth

	The receive bandwidth for this experiment, in Hz.

This is read-only once established in instantiation.

	
property rx_maxfreq

	The maximum receive frequency.

This is the maximum tx frequency possible in this experiment (maximum given by the center
frequency and sampling rate), as license doesn’t matter for receiving. The maximum is
slightly less than that allowed by the center frequency and rxrate, to stay away from the
edges of the possible receive band where the signal may be distorted.

	
property rx_minfreq

	The minimum receive frequency.

This is the minimum rx frequency possible in this experiment (minimum given by the center
frequency and sampling rate) - license doesn’t restrict receiving. The minimum is
slightly more than that allowed by the center frequency and rxrate, to stay away from the
edges of the possible receive band where the signal may be distorted.

	
property rxctrfreq

	The receive center frequency that USRP is tuned to (kHz).

	
property rxrate

	The receive bandwidth for this experiment, or the receive sampling rate (of I and Q samples)
In Hz.

This is read-only once established in instantiation.

	
property scan_objects

	The list of instances of class Scan for use in radar_control.

These cannot be modified by the user, but are created using the slice dictionary.

	
property scheduling_mode

	Return the scheduling mode time type that this experiment is running
in. Types are listed in possible_scheduling_modes. Initialized to
‘unknown’ until set by the experiment handler.

	
self_check()

	Check that the values in this experiment are valid.

Checks all slices.

	
set_slice_defaults(exp_slice)

	Set up defaults in case of some parameters being left blank.

	Parameters

	exp_slice – slice to set defaults of

	Returns slice_with_defaults

	updated slice

	
static set_slice_identifiers(exp_slice)

	Set the hidden slice keys to determine how to run the slice.

This function sets up internal identifier flags ‘clrfrqflag’ and ‘rxonly’ in the slice so
that we know how to properly set up the slice and know which keys in the slice must be
specified and which are unnecessary. If these keys are ever written by the user, they will
be rewritten here.

	Parameters

	exp_slice – slice in which to set identifiers

	
setup_slice(exp_slice)

	Check slice for errors and set defaults of optional keys.

Before adding the slice, ensure that the internal parameters are set, remove unnecessary
keys and check values of keys that are needed, and set defaults of keys that are optional.

The following are always able to be defaulted, so are optional:
“tx_antennas”, “rx_main_antennas”, “rx_int_antennas”, “pulse_phase_offset”, “scanboundflag”,
“scanbound”, “acf”, “xcf”, “acfint”, “wavetype”, “seqoffset”, “averaging_method”

The following are always required for processing acf, xcf, and acfint which we will assume
we are always doing:
“pulse_sequence”, “tau_spacing”, “pulse_len”, “num_ranges”, “first_range”, “intt”, “intn”, “beam_angle”,
“beam_order”

The following are required depending on slice type:
“txfreq”, “rxfreq”, “clrfrqrange”

	Param

	exp_slice: a slice to setup

	Returns

	complete_slice : a checked slice with all defaults

	
slice_beam_directions_mapping(slice_id)

	A mapping of the beam directions in the given slice id.

	Parameters

	slice_id – id of the slice to get beam directions for.

	Returns mapping

	enumeration mapping dictionary of beam number to beam
direction(s) in degrees off boresight.

	
property slice_dict

	The dictionary of slices.

The slice dictionary can be updated in add_slice, edit_slice, and del_slice. The slice
dictionary is a dictionary of dictionaries that looks like:

{ slice_id1 : {slice_key1 : x, slice_key2 : y, …},
slice_id2 : {slice_key1 : x, slice_key2 : y, …},
…}

	
property slice_ids

	The list of slice ids that are currently available in this experiment.

This can change when add_slice, edit_slice, and del_slice are called.

	
property slice_keys

	The list of slice keys available.

This cannot be updated. These are the keys in the current ExperimentPrototype
slice_keys dictionary (the parameters available for slices).

	
property transmit_metadata

	A dictionary of config options and experiment-set values that cannot change in the
experiment, that will be used to build pulse sequences.

	
property tx_bandwidth

	The transmission sample rate to the DAC (Hz), and the transmit bandwidth.

This is read-only once established in instantiation.

	
property tx_maxfreq

	The maximum transmit frequency.

This is the maximum tx frequency possible in this experiment (either maximum in our license
or maximum given by the center frequency, and sampling rate). The maximum is slightly less
than that allowed by the center frequency and txrate, to stay away from the edges of the
possible transmission band where the signal is distorted.

	
property tx_minfreq

	The minimum transmit frequency.

This is the minimum tx frequency possible in this experiment (either minimum in our license
or minimum given by the center frequency and sampling rate). The minimum is slightly more
than that allowed by the center frequency and txrate, to stay away from the edges of the
possible transmission band where the signal is distorted.

	
property txctrfreq

	The transmission center frequency that USRP is tuned to (kHz).

	
property txrate

	The transmission sample rate to the DAC (Hz).

This is read-only once established in instantiation.

	
property xcf

	The default cross-correlation flag boolean.

This provides the default for slices where this key isn’t specified.

	
experiment_prototype.experiment_prototype.hidden_key_set = frozenset({'clrfrqflag', 'rxonly', 'slice_interfacing'})

	These are used by the build_scans method (called from the experiment_handler every
time the experiment is run). If set by the user, the values will be overwritten and
therefore ignored.

	
experiment_prototype.experiment_prototype.interface_types = ('SCAN', 'INTTIME', 'INTEGRATION', 'PULSE')

	The types of interfacing available for slices in the experiment.

Interfacing in this case refers to how two or more components are
meant to be run together. The following types of interfacing are possible:

1. SCAN.
The scan by scan interfacing allows for slices to run a scan of one slice,
followed by a scan of the second. The scan mode of interfacing typically
means that the slice will cycle through all of its beams before switching
to another slice.

There are no requirements for slices interfaced in this manner.

2. INTTIME.
This type of interfacing allows for one slice to run its integration period
(also known as integration time or averaging period), before switching to
another slice’s integration period. This type of interface effectively creates
an interleaving scan where the scans for multiple slices are run ‘at the same
time’, by interleaving the integration times.

	Slices which are interfaced in this manner must share:
	
	the same SCANBOUND value.

3. INTEGRATION.
Integration interfacing allows for pulse sequences defined in the slices to
alternate between each other within a single integration period. It’s important
to note that data from a single slice is averaged only with other data from that
slice. So in this case, the integration period is running two slices and can
produce two averaged datasets, but the sequences (integrations) within the
integration period are interleaved.

	Slices which are interfaced in this manner must share:
	
	the same SCANBOUND value.

	the same INTT or INTN value.

	the same BEAM_ORDER length (scan length)

4. PULSE.
Pulse interfacing allows for pulse sequences to be run together concurrently.
Slices will have their pulse sequences summed together so that the
data transmits at the same time. For example, slices of different frequencies
can be mixed simultaneously, and slices of different pulse sequences can also
run together at the cost of having more blanked samples. When slices are
interfaced in this way the radar is truly transmitting and receiving the
slices simultaneously.

	Slices which are interfaced in this manner must share:
	
	the same SCANBOUND value.

	the same INTT or INTN value.

	the same BEAM_ORDER length (scan length)

	
experiment_prototype.experiment_prototype.slice_key_set = frozenset({'acf', 'acfint', 'averaging_method', 'beam_angle', 'beam_order', 'clrfrqrange', 'comment', 'cpid', 'first_range', 'intn', 'intt', 'iwavetable', 'lag_table', 'num_ranges', 'pulse_len', 'pulse_phase_offset', 'pulse_sequence', 'qwavetable', 'range_sep', 'rx_int_antennas', 'rx_main_antennas', 'rxfreq', 'scanbound', 'seqoffset', 'slice_id', 'tau_spacing', 'tx_antennas', 'txfreq', 'wavetype', 'xcf'})

	These are the keys that are set by the user when initializing a slice. Some
are required, some can be defaulted, and some are set by the experiment
and are read-only.

Slice Keys Required by the User

	pulse_sequence required
	The pulse sequence timing, given in quantities of tau_spacing, for example
normalscan = [0, 14, 22, 24, 27, 31, 42, 43].

	tau_spacing required
	multi-pulse increment (mpinc) in us, Defines minimum space between pulses.

	pulse_len required
	length of pulse in us. Range gate size is also determined by this.

	num_ranges required
	Number of range gates.

	first_range required
	first range gate, in km

	intt required or intn required
	duration of an integration, in ms. (maximum)

	intn required or intt required
	number of averages to make a single integration, only used if intt = None.

	beam_angle required
	list of beam directions, in degrees off azimuth. Positive is E of N. The beam_angle list
length = number of beams. Traditionally beams have been 3.24 degrees separated but we
don’t refer to them as beam -19.64 degrees, we refer as beam 1, beam 2. Beam 0 will
be the 0th element in the list, beam 1 will be the 1st, etc. These beam numbers are
needed to write the beam_order list. This is like a mapping of beam number (list
index) to beam direction off boresight.

	beam_order required
	beam numbers written in order of preference, one element in this list corresponds to
one integration period. Can have lists within the list, resulting in multiple beams
running simultaneously in the averaging period, so imaging. A beam number of 0 in
this list gives us the direction of the 0th element in the beam_angle list. It is
up to the writer to ensure their beam pattern makes sense. Typically beam_order is
just in order (scanning W to E or E to W, ie. [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15]. You can list numbers multiple times in the beam_order list,
for example [0, 1, 1, 2, 1] or use multiple beam numbers in a single
integration time (example [[0, 1], [3, 4]], which would trigger an imaging
integration. When we do imaging we will still have to quantize the directions we
are looking in to certain beam directions.

	clrfrqrange required or txfreq or rxfreq required
	range for clear frequency search, should be a list of length = 2, [min_freq, max_freq]
in kHz. Not currently supported.

	txfreq required or clrfrqrange or rxfreq required
	transmit frequency, in kHz. Note if you specify clrfrqrange it won’t be used.

	rxfreq required or clrfrqrange or txfreq required
	receive frequency, in kHz. Note if you specify clrfrqrange or txfreq it won’t be used. Only
necessary to specify if you want a receive-only slice.

Defaultable Slice Keys

	acf defaults
	flag for rawacf and generation. The default is False. If True, the following fields are
also used:
- averaging_method (default ‘mean’)
- xcf (default True if acf is True)
- acfint (default True if acf is True)
- lagtable (default built based on all possible pulse combos)
- range_sep (will be built by pulse_len to verify any provided value)

	acfint defaults
	flag for interferometer autocorrelation data. The default is True if acf is True, otherwise
False.

	averaging_method defaults
	a string defining the type of averaging to be done. Current methods are ‘mean’ or ‘median’.
The default is ‘mean’.

	comment defaults
	a comment string that will be placed in the borealis files describing the slice. Defaults
to empty string.

	lag_table defaults
	used in acf calculations. It is a list of lags. Example of a lag: [24, 27] from
8-pulse normalscan. This defaults to a lagtable built by the pulse sequence
provided. All combinations of pulses will be calculated, with both the first pulses
and last pulses used for lag-0.

	pulse_phase_offset defaults
	Allows phase shifting of pulses, enabling encoding of pulses. Default all
zeros for all pulses in pulse_sequence. Pulses can be shifted with a single
phase shift for each pulse or with a phase shift specified for each sample
in the pulses of the slice.

	range_sep defaults
	a calculated value from pulse_len. If already set, it will be overwritten to be the correct
value determined by the pulse_len. Used for acfs. This is the range gate separation,
in azimuthal direction, in km.

	rx_int_antennas defaults
	The antennas to receive on in interferometer array, default is all
antennas given max number from config.

	rx_main_antennas defaults
	The antennas to receive on in main array, default is all antennas
given max number from config.

	scanbound defaults
	A list of seconds past the minute for integration times in a scan to align to. Defaults
to None, not required.

	seqoffset defaults
	offset in us that this slice’s sequence will begin at, after the start of the sequence.
This is intended for PULSE interfacing, when you want multiple slice’s pulses in one sequence
you can offset one slice’s sequence from the other by a certain time value so as to not run both
frequencies in the same pulse, etc. Default is 0 offset.

	tx_antennas defaults
	The antennas to transmit on, default is all main antennas given max
number from config.

	xcf defaults
	flag for cross-correlation data. The default is True if acf is True, otherwise False.

Read-only Slice Keys

	clrfrqflag read-only
	A boolean flag to indicate that a clear frequency search will be done.
Not currently supported.

	cpid read-only
	The ID of the experiment, consistent with existing radar control programs.
This is actually an experiment-wide attribute but is stored within the
slice as well. This is provided by the user but not within the slice,
instead when the experiment is initialized.

	rx_only read-only
	A boolean flag to indicate that the slice doesn’t transmit, only receives.

	slice_id read-only
	The ID of this slice object. An experiment can have multiple slices. This
is not set by the user but instead set by the experiment when the
slice is added. Each slice id within an experiment is unique. When experiments
start, the first slice_id will be 0 and incremented from there.

	slice_interfacing read-only
	A dictionary of slice_id : interface_type for each sibling slice in the
experiment at any given time.

Not currently supported and will be removed

	wavetype defaults
	string for wavetype. The default is SINE. Not currently supported.

	iwavetable defaults
	a list of numeric values to sample from. The default is None. Not currently supported
but could be set up (with caution) for non-SINE. Not currently supported.

	qwavetable defaults
	a list of numeric values to sample from. The default is None. Not currently supported
but could be set up (with caution) for non-SINE. Not currently supported.

experiment_exception

This is the exception that is raised when there are problems with the experiment that
cannot be remedied using experiment_prototype methods.

	copyright

	2018 SuperDARN Canada

	author

	Marci Detwiller

	
exception experiment_prototype.experiment_exception.ExperimentException(message, *args)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Is raised for the exception where an experiment cannot be run due to setup errors.

list_tests

Basic tests for use in checking slices.

	copyright

	2018 SuperDARN Canada

	author

	Marci Detwiller

	
experiment_prototype.list_tests.has_duplicates(list_to_check)

	Check if the list has duplicate values.

	Parameters

	list_to_check – A list to check.

	Returns

	boolean True if duplicates exist, False if not.

	
experiment_prototype.list_tests.is_increasing(list_to_check)

	Check if list is increasing.

	Parameters

	list_to_check – a list of numbers

	Returns

	boolean True if is increasing, False if not.

Subpackages

	experiment_prototype.scan_classes package
	scan_class_base

	ScanClassBase
	ScanClassBase.prep_for_nested_scan_class()

	ScanClassBase.slice_combos_sorter()

	scans

	Scan
	Scan.get_inttime_slice_ids()

	Scan.prep_for_nested_scan_class()

	averaging_periods

	AveragingPeriod
	AveragingPeriod.build_sequences()

	AveragingPeriod.get_sequence_slice_ids()

	AveragingPeriod.set_beamdirdict()

	sequences

	Sequence
	Sequence.build_pulse_transmit_data()

	Sequence.find_blanks()

experiment_prototype.scan_classes package

scan_class_base

This is the base module for all ScanClassBase types (iterable for an experiment
given certain parameters). These types include the Scan class, the AveragingPeriod
class, and the Sequence class.

	copyright

	2018 SuperDARN Canada

	author

	Marci Detwiller

	
class experiment_prototype.scan_classes.scan_class_base.ScanClassBase(object_keys, object_slice_dict, object_interface, transmit_metadata)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The base class for the classes Scan, AveragingPeriod, and Sequence.

Scans are made up of AveragingPeriods, these are typically a 3sec time of
the same pulse sequence pointing in one direction. AveragingPeriods are made
up of Sequences, typically the same sequence run ave. 20-30 times after a clear
frequency search. Sequences are made up of pulses, which is a list of dictionaries
where each dictionary describes a pulse.

	Parameters

	
	object_keys – list of slice_ids that need to be included in this
scan_class_base type.

	object_slice_dict – the slice dictionary that explains the parameters of each
slice that is included in this scan_class_base type. Keys are the slice_ids included
and values are dictionaries including all necessary slice parameters as keys.

	object_interface – the interfacing dictionary that describes how to interface the
slices that are included in this scan_class_base type. Keys are tuples of format
(slice_id_1, slice_id_2) and values are of interface_types set up in
experiment_prototype.

	transmit_metadata – a dictionary of the experiment-wide transmit metadata for building

	pulse sequences. The keys of the transmit_metadata are:
	‘output_rx_rate’ [Hz],
‘main_antenna_count’,
‘tr_window_time’ [s],
‘main_antenna_spacing’ [m],
‘pulse_ramp_time’ [s],
‘max_usrp_dac_amplitude’ [V peak],
‘rx_sample_rate’ [Hz],
‘minimum_pulse_separation’ [us],
‘txctrfreq’ [kHz],
‘txrate’ [Hz]

	
prep_for_nested_scan_class()

	Retrieve the params needed for the nested class (also with base ScanClassBase).

This class reduces duplicate code by breaking down the ScanClassBase class into
the separate portions for the nested instances. For Scan class, the nested class
is AveragingPeriod, and we will need to break down the parameters given to the
Scan instance because there may be multiple AveragingPeriods within. For
AveragingPeriod, the nested class is Sequence.

	Returns

	params for the nested class’s instantiation.

	
static slice_combos_sorter(list_of_combos, all_keys)

	Sort keys of a list of combinations so that keys only appear once in the list.

This function modifes the input list_of_combos so that all slices that are
associated are associated in the same list. For example, if input is
list_of_combos = [[0,1], [0,2], [0,4], [1,4], [2,4]] and all_keys = [0,1,2,4,5]
then the output should be [[0,1,2,4], [5]]. This is used to get the slice
dictionary for nested class instances. In the above example, we would then have
two instances of the nested class to create: one with slices 0,1,2,4 and another
with slice 5.

	Parameters

	
	list_of_combos – list of lists of length two associating two slices
together.

	all_keys – list of all keys included in this object (scan, ave_period, or
sequence).

	Returns

	list of combos that is sorted so that each key only appears once and
the lists within the list are of however long necessary

scans

This is the module containing the Scan class. The Scan class contains the
ScanClassBase members, as well as a scanbound (to be implemented), a beamdir
dictionary and scan_beams dictionary which specify beam direction angle and beam
order in a scan, respectively, for individual slices that are to be combined in this
scan. Beam direction information gets passed on to the AveragingPeriod.

	copyright

	2018 SuperDARN Canada

	author

	Marci Detwiller

	
class experiment_prototype.scan_classes.scans.Scan(scan_keys, scan_slice_dict, scan_interface, transmit_metadata)

	Bases: ScanClassBase

Set up the scans.

A scan is made up of AveragingPeriods at defined beam directions, and some other
metadata for the scan itself.

The unique members of the scan are (not a member of the scanclassbase):

	scanbound
	A list of seconds past the minute for scans to align to.

	
get_inttime_slice_ids()

	Return the slice_ids that are within the AveragingPeriods in this Scan instance.

Take the interface keys inside this scan and return a list of lists
where each inner list contains the slices that are in an averagingperiod that is
inside this scan. ie. len(nested_slice_list) = # of averagingperiods in this
scan, len(nested_slice_list[0]) = # of slices in the first averagingperiod,
etc.

	Returns

	the nested_slice_list which is used when creating the
AveragingPeriods for this scan.

	
prep_for_nested_scan_class()

	Override of base method to give more information about beamorder and beamdir.

Beam order and beamdir are required for instantiation of the nested class
AveragingPeriod so we need to extract this information as well to fill
self.aveperiods.

	Returns

	a list of lists of parameters that can be directly passed into the
nested ScanClassBase type, AveragingPeriod. the params_list is of length = # of
AveragingPeriods in this scan.

averaging_periods

This is the module containing the AveragingPeriod class. The AveragingPeriod class
contains the ScanClassBase members, as well as clrfrqflag (to be implemented),
intn (number of integrations to run), or intt(max time for integrations),
and it contains sequences of class Sequence.

	copyright

	2018 SuperDARN Canada

	author

	Marci Detwiller

	
class experiment_prototype.scan_classes.averaging_periods.AveragingPeriod(ave_keys, ave_slice_dict, ave_interface, transmit_metadata, slice_to_beamorder_dict, slice_to_beamdir_dict)

	Bases: ScanClassBase

Set up the AveragingPeriods.

An averagingperiod contains sequences and integrates one or multiple pulse sequences
together in a given time frame or in a given number of averages, if that is the
preferred limiter.

The unique members of the averagingperiod are (not a member of the scanclassbase):

	slice_to_beamorder
	passed in by the scan that this AveragingPeriod instance is contained in. A
dictionary of slice: beam_order for all slices contained in this aveperiod.

	slice_to_beamdir
	passed in by the scan that this AveragingPeriod instance is contained in. A
dictionary of slice: beamdir(s) for all slices contained in this aveperiod.

	clrfrqflag
	Boolean, True if clrfrqsearch should be performed.

	clrfrqrange
	The range of frequency to search if clrfrqflag is True. Otherwise empty.

	intt
	The priority limitation. The time limit (ms) at which time the aveperiod will
end. If None, we will use intn to end the aveperiod (a number of sequences).

	intn
	Number of averages (# of times the sequence transmits) to end after for the
averagingperiod.

	sequences
	The list of sequences included in this aveperiod. This does not indicate how
many averages will be transmitted in the aveperiod. If there are multiple
sequences in the list, they will be alternated between until the end of the
aveperiod.

	one_pulse_only
	boolean, True if this averaging period only has one unique set of pulse samples in it.
This is true if there is only one sequence in the averaging period, and all pulses after the
first pulse in the sequence have the isarepeat key = True. This boolean can be used to
speed up the process of sending data to the driver which means we can get more averages
in less time.

	
build_sequences(slice_to_beamdir_dict)

	Build a list of sequences to iterate through when transmitting.

This includes building all pulses within the sequences, so it then contains all
pulse samples data to iterate through when transmitting. If there is only one
sequence type in the averaging period, this list will be of length 1. That
would mean that that one sequence gets repeated throughout the averagingperiod
(intn and intt still apply).

	Returns

	sequence_dict_list, list of lists of pulse dictionaries.

	
get_sequence_slice_ids()

	Return the slice_ids that are within the Sequences in this AveragingPeriod
instance.

Take the interface keys inside this averagingperiod and return a list of lists
where each inner list contains the slices that are in a sequence that is inside
this averagingperiod. ie. len(nested_slice_list) = # of sequences in this
averagingperiod, len(nested_slice_list[0]) = # of slices in the first sequence,
etc.

	Returns

	the nested_slice_list which is used when creating the sequences in
this averagingperiod.

	
set_beamdirdict(beamiter)

	Get a dictionary of ‘slice_id’ : ‘beamdir(s)’ for this averaging period.

At a given beam iteration, this averagingperiod instance will select the beam
directions that it will shift to.

	Parameters

	beamiter – the index into the beam_order list, or the index of an averaging
period into the scan

	Returns

	dictionary of slice to beamdir where beamdir is always a list (may be
of length one though). Beamdir is azimuth angle.

sequences

This is the module containing the Sequence class. The Sequence class contains the
ScanClassBase members, as well as a list of pulse dictionaries,
the total_combined_pulses in the sequence, power_divider, last_pulse_len, ssdelay,
seqtime, which together give sstime (scope synce time, or time for receiving,
and numberofreceivesamples to sample during the receiving window (calculated using
the receive sampling rate).

	copyright

	2018 SuperDARN Canada

	author

	Marci Detwiller

	
class experiment_prototype.scan_classes.sequences.Sequence(seqn_keys, sequence_slice_dict, sequence_interface, transmit_metadata)

	Bases: ScanClassBase

Set up the sequence class.

The members of the sequence are:

	pulses
	a list of pre-combined, pre-sampled pulse dictionaries (one dictionary = one
basic pulse of single frequency). The dictionary keys are: isarepeat,
pulse_timing_us, slice_id, slice_pulse_index, pulse_len,
intra_pulse_start_time, combined_pulse_index, pulse_shift, iscombined,
combine_total, and combine_index.

	total_combined_pulses
	the total number of pulses to be sent by the driver. This may not
be the sum of pulses in all slices in the sequence, as some pulses may need to be
combined because they are overlapping in timing. This is the number of pulses in the
combined sequence, or the number of times T/R signal goes high in the sequence.

	power_divider
	the power ratio per slice. If there are multiple slices in the same
pulse then we must reduce the output amplitude to potentially accommodate multiple
frequencies.

	last_pulse_len
	the length of the last pulse (us)

	ssdelay
	delay past the end of the sequence to receive for (us) - function of num_ranges and
pulse_len. ss stands for scope sync.

	seqtime
	the amount of time for the whole sequence to transmit, until the logic signal
switches low on the last pulse in the sequence (us).

	sstime
	ssdelay + seqtime (total time for receiving) (us).

	numberofreceivesamples
	the number of receive samples to take, given the rx rate, during
the sstime.

	first_rx_sample_time
	The location of the first sample for the RX data, in time, from the start of the TX data.
This will be calculated as the time at center sample of the first pulse. In seconds.

	blanks
	A list of sample indices that should not be used for acfs because they were samples
taken when transmitting.

Pulses is a list of pulse dictionaries. The pulse dictionary keys are:

	isarepeat
	Boolean, True if the pulse is exactly the same as the last pulse in the sequence.

	pulse_timing_us
	The time past the start of sequence for this pulse to start at (us).

	slice_id
	The slice_id that corresponds to this pulse and gives the information about the
experiment and pulse information (frequency, num_ranges, first_range, etc.).

	slice_pulse_index
	The index of the pulse in its own slice’s sequence.

	pulse_len
	The length of the pulse (us)

	intra_pulse_start_time
	If the pulse is combined with another pulse and they transmit in a single USRP
burst, then we need to know if there is an offset from one pulse’s samples being
sent and the other pulse’s samples being sent.

	combined_pulse_index
	The combined_pulse_index is the index corresponding with actual number of pulses
that will be sent to driver, after combinations are completed. Multiple pulse
dictionaries in self.pulses can have the same combined_pulse_index if they are
combined together, ie are close enough in timing that T/R will not go low
between them, and we will combine the samples of both pulses into one set to
send to the driver.

	pulse_shift
	Phase shift for this pulse, for doing pulse coding.

	iscombined
	Boolean, true if there is another pulse with the same combined_pulse_index.

	combine_total
	Total number of pulse dictionaries that have the same combined_pulse_index as
this one. (minimum number = 1, itself).

	combine_index
	Index of this pulse dictionary in regards to all the other pulse dictionaries that
have the same combined_pulse_index.

	
build_pulse_transmit_data(slice_to_beamdir_dict)

	Build a list of ready-to-transmit pulse dictionaries (with samples) to send to
driver.

	Param

	slice_to_beamdir_dict: dictionary of slice id to beam direction(s) for
a single averaging period (i.e. if the list len > 1, we’re imaging).

	Returns sequence_list

	list of combined pulse dictionaries in correct order.
The keys in the ready-to-transmit pulse dictionary are:

	startofburst
	Boolean, True if this is the first pulse in the sequence.

	endofburst
	Boolean, True if this is the last pulse in the sequence.

	pulse_antennas
	The antennas to transmit on

	samples_array
	a list of arrays - each array corresponds to an antenna (the
samples are phased). All arrays are the same length for a single pulse on
that antenna. The length of the list is equal to main_antenna_count (all
samples are calculated). If we are not using an antenna, that index is a
numpy array of zeroes.

	timing
	The time to send the pulse at (past the start of sequence, us)

	isarepeat
	Boolean, True if this pulse is the same as the last pulse except for its
timing.

	
find_blanks()

	Sets the blanks. Must be run after first_rx_sample_time is set inside the
build_pulse_transmit_data function. Called from inside the build_pulse_transmit_data
function.

experiments package

This is where you would create your experiment that you would like to run on the
radar. The following are a couple of examples of current SuperDARN experiments, and a
brief discussion of the update() method which will be implemented at a later date.

experiments.normalscan module

Normalscan is a very common experiment for SuperDARN. It does not update itself, so
no update() method is necessary. It only has a single slice, as there is only one
frequency, pulse_len, beam_order, etc. Since there is only one slice there is no need
for an interface dictionary.

 1#!/usr/bin/python
 2
 3# write an experiment that creates a new control program.
 4
 5import sys
 6import os
 7
 8BOREALISPATH = os.environ['BOREALISPATH']
 9sys.path.append(BOREALISPATH)
10
11import experiments.superdarn_common_fields as scf
12from experiment_prototype.experiment_prototype import ExperimentPrototype
13
14class Normalscan(ExperimentPrototype):
15
16 def __init__(self):
17 cpid = 151
18 super(Normalscan, self).__init__(cpid)
19
20 if scf.IS_FORWARD_RADAR:
21 beams_to_use = scf.STD_16_FORWARD_BEAM_ORDER
22 else:
23 beams_to_use = scf.STD_16_REVERSE_BEAM_ORDER
24
25 if scf.opts.site_id in ["cly", "rkn", "inv"]:
26 num_ranges = scf.POLARDARN_NUM_RANGES
27 if scf.opts.site_id in ["sas", "pgr"]:
28 num_ranges = scf.STD_NUM_RANGES
29
30 self.add_slice({ # slice_id = 0, there is only one slice.
31 "pulse_sequence": scf.SEQUENCE_7P,
32 "tau_spacing": scf.TAU_SPACING_7P,
33 "pulse_len": scf.PULSE_LEN_45KM,
34 "num_ranges": num_ranges,
35 "first_range": scf.STD_FIRST_RANGE,
36 "intt": 3500, # duration of an integration, in ms
37 "beam_angle": scf.STD_16_BEAM_ANGLE,
38 "beam_order": beams_to_use,
39 "scanbound": [i * 3.5 for i in range(len(beams_to_use))], #1 min scan
40 "txfreq" : scf.COMMON_MODE_FREQ_1, #kHz
41 "acf": True,
42 "xcf": True, # cross-correlation processing
43 "acfint": True, # interferometer acfs
44 })
45

experiments.twofsound module

Twofsound is a common variant of the normalscan experiment for SuperDARN. It does not
update itself, so no update() method is necessary. It has two frequencies so will
require two slices. The frequencies switch after a full scan (full cycle through the
beams), therefore the interfacing between slices 0 and 1 should be ‘SCAN’.

 1#!/usr/bin/python
 2
 3# write an experiment that creates a new control program.
 4import os
 5import sys
 6import copy
 7
 8BOREALISPATH = os.environ['BOREALISPATH']
 9sys.path.append(BOREALISPATH)
10
11from experiment_prototype.experiment_prototype import ExperimentPrototype
12import experiments.superdarn_common_fields as scf
13
14
15class Twofsound(ExperimentPrototype):
16
17 def __init__(self):
18 cpid = 3503
19
20 if scf.IS_FORWARD_RADAR:
21 beams_to_use = scf.STD_16_FORWARD_BEAM_ORDER
22 else:
23 beams_to_use = scf.STD_16_REVERSE_BEAM_ORDER
24
25 if scf.opts.site_id in ["cly", "rkn", "inv"]:
26 num_ranges = scf.POLARDARN_NUM_RANGES
27 if scf.opts.site_id in ["sas", "pgr"]:
28 num_ranges = scf.STD_NUM_RANGES
29
30 slice_1 = { # slice_id = 0, the first slice
31 "pulse_sequence": scf.SEQUENCE_7P,
32 "tau_spacing": scf.TAU_SPACING_7P,
33 "pulse_len": scf.PULSE_LEN_45KM,
34 "num_ranges": num_ranges,
35 "first_range": scf.STD_FIRST_RANGE,
36 "intt": 3500, # duration of an integration, in ms
37 "beam_angle": scf.STD_16_BEAM_ANGLE,
38 "beam_order": beams_to_use,
39 "scanbound" : [i * 3.5 for i in range(len(beams_to_use))],
40 "txfreq" : scf.COMMON_MODE_FREQ_1, #kHz
41 "acf": True,
42 "xcf": True, # cross-correlation processing
43 "acfint": True, # interferometer acfs
44 }
45
46 slice_2 = copy.deepcopy(slice_1)
47 slice_2['txfreq'] = scf.COMMON_MODE_FREQ_2
48
49 list_of_slices = [slice_1, slice_2]
50 sum_of_freq = 0
51 for slice in list_of_slices:
52 sum_of_freq += slice['txfreq']# kHz, oscillator mixer frequency on the USRP for TX
53 rxctrfreq = txctrfreq = int(sum_of_freq/len(list_of_slices))
54
55
56 super(Twofsound, self).__init__(cpid, txctrfreq=txctrfreq, rxctrfreq=rxctrfreq,
57 comment_string='Twofsound classic scan-by-scan')
58
59 self.add_slice(slice_1)
60
61 self.add_slice(slice_2, interfacing_dict={0: 'SCAN'})
62

radar_status package

radar_status.radar_status module

	
class radar_status.radar_status.RadarStatus

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class to define transmit specifications of a certain frequency, beam, and pulse sequence.

errors = (‘EXPNEEDED’, ‘NOERROR’, ‘WARNING’, ‘EXITERROR’)

Probably will be phased out once administrator is working

	
radar_status.radar_status.errortype()

	

	
radar_status.radar_status.statustype()

	

sample_building package

sample_building.sample_building module

	
sample_building.sample_building.calculate_first_rx_sample_time(first_pulse_num_samples_with_tr, txrate)

	The first rx sample time is in the centre of the first pulse, so find the sample number of
that time in the TX data so we can align the samples and offset appropriately in the RX
decimated data. Assumes window time for TR is the same at front and end of actual non-zero
samples.
:param first_pulse_num_samples_with_tr: number of samples in the first pulse.
:param txrate: The transmitting sample rate, in Hz.
:return: first_rx_sample_time, time to centre of first pulse.

	
sample_building.sample_building.calculated_combined_pulse_samples_length(pulse_list, txrate)

	Get the total length of the array for the combined pulse.

Determine the length of the combined pulse in number of samples before combining the samples,
using the length of the samples arrays and the starting sample number for each pulse to combine.
(Not all pulse samples may start at sample zero due to differing intra_pulse_start_times.)

	Parameters

	
	pulse_list – list of pulse dictionaries that must be combined to one pulse.

	txrate – sampling rate of transmission going to DAC.

	Returns combined_pulse_length

	the length of the pulse after combining slices if necessary.

	
sample_building.sample_building.create_debug_sequence_samples(txrate, txctrfreq, list_of_pulse_dicts, main_antenna_count, final_rx_sample_rate, ssdelay)

	Build the samples for the whole sequence, to be recorded in datawrite.

	Parameters

	
	txrate – The rate at which these samples will be transmitted at, Hz.

	txctrfreq – The centre frequency that the N200 is tuned to (and will mix with
these samples, kHz).

	list_of_pulse_dicts – The list of all pulse dictionaries for pulses included

in this sequence. Pulse dictionaries have all metadata and the samples for the
pulse.
:param file_path: location to place the json file.
:param main_antenna_count: The number of antennas available for transmitting on.
:param final_rx_sample_rate: The final sample rate after decimating on the receive
side (Hz).
:param ssdelay: Receiver time of flight for last echo. This is the time to continue

receiving after the last pulse is transmitted.

	Returns

	

	
sample_building.sample_building.create_uncombined_pulses(pulse_list, power_divider, exp_slices, beamdir, txrate, txctrfreq, main_antenna_count, main_antenna_spacing, pulse_ramp_time, max_usrp_dac_amplitude)

	Create the samples for a given pulse_list and append those samples to the pulse_list.

Creates a list of numpy arrays where each numpy array is the pulse samples for a
given pulse and a given transmit antenna (index of array in list provides antenna
number). Adds the list of samples to the pulse dictionary (in the pulse_list list)
under the key ‘samples’.

If the antenna is listed in the config but is not used in the sequence, it is provided
an array of zeroes to transmit.

	Parameters

	
	pulse_list – a list of dictionaries, each dict is a pulse. The list includes
all pulses that will be combined together. All dictionaries in this list (all
‘pulses’) will be modified to include the ‘samples’ key which will be a list of
arrays where every array is a set of samples for a specific antenna.

	power_divider – an integer for number of pulses combined (max) in the whole
sequence, so we can adjust the amplitude of each uncombined pulse accordingly.

	exp_slices – slice dictionary containing all necessary slice_ids for this
pulse.

	beamdir – the slice to beamdir dictionary to retrieve the phasing information
for each antenna in a certain slice’s pulses.

	txrate – transmit sampling rate, in Hz.

	txctrfreq – transmit mixing frequency, in kHz.

	main_antenna_count – number of main antennas in the array to transmit.

	main_antenna_spacing – spacing between main array antennas, assumed uniform.

	pulse_ramp_time – time to ramp up the pulse at the start and end of the pulse. This

time counts as part of the total pulse length time (in seconds).
:param max_usrp_dac_amplitude: max voltage out of the digital-analog converter on the USRP

	
sample_building.sample_building.get_phshift(beamdir, freq, antenna, pulse_shift, num_antennas, antenna_spacing, centre_offset=0.0)

	Find the phase shift for a given antenna and beam direction.

Form the beam given the beam direction (degrees off boresite), the tx frequency, the antenna number,
a specified extra phase shift if there is any, the number of antennas in the array, and the spacing
between antennas.

	Parameters

	
	beamdir – the azimuthal direction of the beam off boresight, in degrees, positive beamdir being to
the right of the boresight (looking along boresight from ground). This is for this antenna.

	freq – transmit frequency in kHz

	antenna – antenna number, INDEXED FROM ZERO, zero being the leftmost antenna if looking down the boresight
and positive beamdir right of boresight

	pulse_shift – in degrees, for phase encoding

	num_antennas – number of antennas in this array

	antenna_spacing – distance between antennas in this array, in meters

	centre_offset – the phase reference for the midpoint of the array. Default = 0.0, in metres.
Important if there is a shift in centre point between arrays in the direction along the array.
Positive is shifted to the right when looking along boresight (from the ground).

	Returns phshift

	a phase shift for the samples for this antenna number, in radians.

	
sample_building.sample_building.get_samples(rate, wave_freq, pulse_len, ramp_time, max_amplitude, iwave_table=None, qwave_table=None)

	Get basic (not phase-shifted) samples for a given pulse.

Find the normalized sample array given the rate (Hz), frequency (Hz), pulse length
(s), and wavetables (list containing single cycle of waveform). Will shift for
beam later. No need to use wavetable if just a sine wave.

	Parameters

	
	rate – tx sampling rate, in Hz.

	wave_freq – frequency offset from the centre frequency on the USRP, given in
Hz. To be mixed with the centre frequency before transmitting. (ex. centre = 12
MHz, wave_freq = + 1.2 MHz, output = 13.2 MHz.

	pulse_len – length of the pulse (in seconds)

	ramp_time – ramp up and ramp down time for the pulse, in seconds. Typical
0.00001 s from config.

	max_amplitude – USRP’s max DAC amplitude. N200 = 0.707 max

	iwave_table – i samples (in-phase) wavetable if a wavetable is required
(ie. not a sine wave to be sampled)

	qwave_table – q samples (quadrature) wavetable if a wavetable is required
(ie. not a sine wave to be sampled)

	Returns samples

	a numpy array of complex samples, representing all samples needed
for a pulse of length pulse_len sampled at a rate of rate.

	Returns actual_wave_freq

	the frequency possible given the wavetable. If wavetype
!= ‘SINE’ (i.e. calculated wavetables were used), then actual_wave_freq may not
be equal to the requested wave_freq param.

	
sample_building.sample_building.get_wavetables(wavetype)

	Find the wavetable to sample from for a given wavetype.

If there are ever any other types of wavetypes besides ‘SINE’, set them up here.

NOTE: The wavetables should sample a single cycle of the waveform. Note that we will have to block frequencies
that could interfere with our license, which will affect the waveform. This blocking of frequencies is not
currently set up, so beware. Would have to get the spectrum of the wavetable waveform and then block frequencies
that when mixed with the centre frequency, result in the restricted frequencies.

Also NOTE: wavetables create a fixed frequency resolution based on their length. This code is from get_samples:

f_norm = wave_freq / rate

sample_skip = int(f_norm * wave_table_len) # THIS MUST BE AN INT, WHICH DEFINES
THE FREQUENCY RESOLUTION.

actual_wave_freq = (float(sample_skip) / float(wave_table_len)) * rate

	Parameters

	wavetype – A string descriptor of the wavetype.

	Returns iwavetable

	an in-phase wavetable, or None if given ‘SINE’ wavetype.

	Returns qwavetable

	a quadrature wavetable, or None if given ‘SINE’ wavetype.

	
sample_building.sample_building.make_pulse_samples(pulse_list, power_divider, exp_slices, slice_to_beamdir_dict, txrate, txctrfreq, main_antenna_count, main_antenna_spacing, pulse_ramp_time, max_usrp_dac_amplitude, tr_window_time)

	Make all necessary samples for all antennas for this pulse.

Given a pulse_list (list of dictionaries of pulses that must be combined), make and
phase shift samples for all antennas, and combine pulse dictionaries into one
pulse if there are multiple waveforms to combine (e.g., multiple frequencies).

	Parameters

	
	pulse_list – a list of dictionaries, each dict is a pulse. The list only
contains pulses that will be sent as a single pulse (ie. have the same
combined_pulse_index).

	power_divider – an integer for number of pulses combined (max) in the whole
sequence, so we can adjust the amplitude of each uncombined pulse accordingly.

	exp_slices – this is the slice dictionary containing the slices necessary for
the sequence.

	slice_to_beamdir_dict – a dictionary describing the beam directions for the
slice_ids.

	txrate – transmit sampling rate, in Hz.

	txctrfreq – transmit mixing frequency, in kHz.

	main_antenna_count – number of main antennas in the array to transmit.

	main_antenna_spacing – spacing between main array antennas, assumed uniform.

	pulse_ramp_time – time to ramp up the pulse at the start and end of the pulse. This

time counts as part of the total pulse length time (in seconds).
:param max_usrp_dac_amplitude: max voltage out of the digital-analog converter on the USRP
:param tr_window_time: time in seconds to add zero-samples to the transmit waveform in order
to count for the transmit/receive switching time. Windows the pulse on both sides.
:returns combined_samples: a list of arrays - each array corresponds to an antenna

(the samples are phased). All arrays are the same length for a single pulse on
that antenna. The length of the list is equal to main_antenna_count (all samples
are calculated). If we are not using an antenna, that index is a numpy array of
zeroes.

	Returns pulse_channels

	The antennas to actually send the corresponding array. If
not all transmit antennas, then we will know that we are transmitting zeroes on
any antennas not listed in this list but available as identified in the config file.

	
sample_building.sample_building.resolve_imaging_directions(beamdirs_list, num_antennas, antenna_spacing)

	Resolve imaging directions to direction per antenna.

This function will take in a list of directions and resolve that to a direction for each
antenna. It will return a list of length num_antenna where each element is a direction off
orthogonal for that antenna.

	Parameters

	
	beamdirs_list – The list of beam directions for this pulse sequence.

	num_antennas – The number of antennas to calculate direcitonrs for.

	antenna_spacing – The spacing between the antennas.

	Returns beamdirs

	A list of beam directions for each antenna.

	Returns amplitudes

	A list of amplitudes for each antenna

	
sample_building.sample_building.rx_azimuth_to_antenna_offset(beamdir, main_antenna_count, interferometer_antenna_count, main_antenna_spacing, interferometer_antenna_spacing, intf_offset, freq)

	Get all the necessary phase shifts for all antennas for all the beams for a pulse sequence.

Take all beam directions and resolve into a list of phase offsets for all antennas given the
spacing, frequency, and number of antennas to resolve for (provided in config).

If the experiment does not use all channels in config, that will be accounted for in the
send_dsp_metadata function, where the phase rotation will instead = 0.0 so all samples from
that receive channel will be multiplied by zero and therefore not included (in beamforming).

	Parameters

	
	beamdir – list of length 1 or more.

	main_antenna_count – the number of main antennas to calculate the phase offset for.

	interferometer_antenna_count – the number of interferometer antennas to calculate the
phase offset for.

	main_antenna_spacing – the spacing between the main array antennas (m).

	interferometer_antenna_spacing – the spacing between the interferometer antennas (m).

	intf_offset – The interferometer offset from the main array (from centre to centre),
in Cartesian coordinates. [x, y, z] where x is along line of antennas, y is along array
normal and z is altitude difference, in m.

	freq – the frequency we are transmitting/receiving at.

	Returns beams_antenna_phases

	a list of length = beam directions, where each element is a list
of length = number of antennas (main array followed by interferometer array). The inner list
contains the phase shift for the corresponding antenna for the corresponding beam.

	
sample_building.sample_building.shift_samples(basic_samples, phshift, amplitude)

	Shift samples for a pulse by a given phase shift.

Take the samples and shift by given phase shift in rads and adjust amplitude as
required for imaging.

	Parameters

	
	basic_samples – samples for this pulse, numpy array

	phshift – phase for this antenna to offset by in rads, float

	amplitude – amplitude for this antenna (= 1 if not imaging), float

	Returns samples

	basic_samples that have been shaped for the antenna for the
desired beam.

utils package

utils.experiment_options.experimentoptions module

To load the config options to be used by the experiment and radar_control blocks.
Config data comes from the config.ini file, the hdw.dat file, and the restrict.dat file.

	
class utils.experiment_options.experimentoptions.ExperimentOptions

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
property altitude

	

	
property analog_atten_stages

	

	
property analog_rx_attenuator

	

	
property analog_rx_rise

	

	
property beam_sep

	

	
property boresight

	

	
property brian_to_driver_identity

	

	
property brian_to_dspbegin_identity

	

	
property brian_to_dspend_identity

	

	
property brian_to_radctrl_identity

	

	
property default_freq

	

	
property driver_to_brian_identity

	

	
property driver_to_dsp_identity

	

	
property driver_to_radctrl_identity

	

	
property dsp_to_driver_identity

	

	
property dsp_to_dw_identity

	

	
property dsp_to_exphan_identity

	

	
property dsp_to_radctrl_identity

	

	
property dspbegin_to_brian_identity

	

	
property dspend_to_brian_identity

	

	
property dw_to_dsp_identity

	

	
property dw_to_radctrl_identity

	

	
property exphan_to_dsp_identity

	

	
property exphan_to_radctrl_identity

	

	
property geo_lat

	

	
property geo_long

	

	
property interferometer_antenna_count

	

	
property interferometer_antenna_spacing

	

	
property intf_offset

	

	
property main_antenna_count

	

	
property main_antenna_spacing

	

	
property max_beams

	

	
property max_freq

	

	
property max_number_of_filter_taps_per_stage

	

	
property max_number_of_filtering_stages

	

	
property max_output_sample_rate

	

	
property max_range_gates

	

	
property max_rx_sample_rate

	

	
property max_tx_sample_rate

	

	
property max_usrp_dac_amplitude

	

	
property min_freq

	

	
property minimum_pulse_length

	

	
property minimum_pulse_separation

	Minimum pulse separation is the minimum before the experiment treats it as a single pulse
(transmitting zeroes or no receiving between the pulses)

	
property minimum_tau_spacing_length

	

	
property phase_sign

	

	
property pulse_ramp_time

	

	
property radctrl_to_brian_identity

	

	
property radctrl_to_driver_identity

	

	
property radctrl_to_dsp_identity

	

	
property radctrl_to_dw_identity

	

	
property radctrl_to_exphan_identity

	

	
property restricted_ranges

	given in tuples of kHz

	
property router_address

	

	
property site_id

	

	
property tdiff

	

	
property tr_window_time

	

	
property usrp_master_clock_rate

	

	
property velocity_sign

	

Config Parameters

	site_id

	sas

	3-letter standard ID of the radar

	gps_octoclock_addr

	addr=192.168.10.131

	IP address of the GPS Octoclock

	devices

	recv_frame_size=4000,addr0=192.168.10.100,
addr1=192.168.10.101,addr2=192.168.10.102,
addr3=192.168.10.103,addr4=192.168.10.104,
addr5=192.168.10.105,addr6=192.168.10.106,
addr7=192.168.10.107,addr8=192.168.10.108,
addr9=192.168.10.109,addr10=192.168.10.110,
addr11=192.168.10.111,addr12=192.168.10.112,
addr13=192.168.10.113,addr14=192.168.10.114,
addr15=192.168.10.115

	UHD USRP device arguments.

	main_antenna_count

	16

	Number of main array antennas (TX/RX)

	interferometer_antenna_count

	4

	Number of interferometer antennas

	main_antenna_usrp_rx_channels

	0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30

	UHD channel designation for RX main
antennas

	interferometer_antenna_usrp_rx_channels

	1,3,5,7

	UHD channel designation for RX intf
antennas.

	main_antenna_usrp_tx_channels

	0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

	UHD channel designation for TX main
antennas.

	main_antenna_spacing

	15.24

	Distance between antennas (m).

	interferometer_antenna_spacing

	15.24

	Distance between antennas (m).

	min_freq

	8.00E+06

	Minimum frequency we can run (Hz).

	max_freq

	20.00E+06

	Maximum frequency we can run (Hz).

	minimum_pulse_length

	100

	Minimum pulse length (us) dependent
upon AGC feedback sample and hold.

	minimum_mpinc_length

	1

	Minimum length of multi-pulse
increment (us).

	minimum_pulse_separation

	125

	The minimum separation (us) before
experiment treats it as a single
pulse (transmitting zeroes and not
receiving between the pulses. 125 us
is approx two TX/RX times.

	tx_subdev

	A:A

	UHD daughterboard string which
defines how to configure ports. Refer
to UHD subdev docs.

	max_tx_sample_rate

	5.00E+06

	Maximum wideband TX rate each device
can run in the system.

	main_rx_subdev

	A:A A:B

	UHD daughterboard string which
defines how to configure ports. Refer
to UHD subdev docs.

	interferometer_rx_subdev

	A:A A:B

	UHD daughterboard string which
defines how to configure ports. Refer
to UHD subdev docs.

	max_rx_sample_rate

	5.00E+06

	Maximum wideband RX rate each
device can run in the system.

	pps

	external

	The PPS source for the system
(internal, external, none).

	ref

	external

	The 10 MHz reference source
(internal, external).

	overthewire

	sc16

	Data type for samples the USRP
operates with. Refer to UHD docs for
data types.

	cpu

	fc32

	Data type of samples that UHD uses
on host CPU. Refer to UHD docs for
data types.

	gpio_bank

	RXA

	The daughterboard pin bank to use for
TR and I/O signals.

	atr_rx

	0x0006

	The pin mask for the RX only mode.

	atr_tx

	0x0018

	The pin mask for the TX only mode.

	atr_xx

	0x0060

	The pin mask for the full duplex
mode (TR).

	atr_0x

	0x0180

	The pin mask for the idle mode.

	max_usrp_dac_amplitude

	0.99

	The amplitude of highest allowed USRP
TX sample (V).

	pulse_ramp_time

	1.00E-05

	The linear ramp time for the
pulse (s)

	tr_window_time

	6.00E-05

	How much windowing on either side of
pulse is needed for TR signal (s).

	usrp_master_clock_rate

	1.00E+08

	Clock rate of the USRP master
clock (Sps).

	max_output_sample_rate

	1.00E+05

	Maximum rate allowed after
downsampling (Sps)

	max_number_of_filter_taps_per_stage

	2048

	The maximum total number of filter
taps for all frequencies combined.
This is a GPU limitation.

	router_address

	tcp://127.0.0.1:6969

	The protocol/IP/port used for the ZMQ
router in Brian.

	radctrl_to_exphan_identity

	RADCTRL_EXPHAN_IDEN

	ZMQ named socket identity.

	radctrl_to_dsp_identity

	RADCTRL_DSP_IDEN

	ZMQ named socket identity.

	radctrl_to_driver_identity

	RADCTRL_DRIVER_IDEN

	ZMQ named socket identity.

	radctrl_to_brian_identity

	RADCTRL_BRIAN_IDEN

	ZMQ named socket identity.

	radctrl_to_dw_identity

	RADCTRL_DW_IDEN

	ZMQ named socket identity.

	driver_to_radctrl_identity

	DRIVER_RADCTRL_IDEN

	ZMQ named socket identity.

	driver_to_dsp_identity

	DRIVER_DSP_IDEN

	ZMQ named socket identity.

	driver_to_brian_identity

	DRIVER_BRIAN_IDEN

	ZMQ named socket identity.

	driver_to_mainaffinity_identity

	DRIVER_MAINAFFINITY_IDEN

	ZMQ named socket identity.

	driver_to_txaffinity_identity

	DRIVER_TXAFFINITY_IDEN

	ZMQ named socket identity.

	driver_to_rxaffinity_identity

	DRIVER_RXAFFINITY_IDEN

	ZMQ named socket identity.

	mainaffinity_to_driver_identity

	MAINAFFINITY_DRIVER_IDEN

	ZMQ named socket identity.

	txaffinity_to_driver_identity

	TXAFFINITY_DRIVER_IDEN

	ZMQ named socket identity.

	rxaffinity_to_driver_identity

	RXAFFINITY_DRIVER_IDEN

	ZMQ named socket identity.

	exphan_to_radctrl_identity

	EXPHAN_RADCTRL_IDEN

	ZMQ named socket identity.

	exphan_to_dsp_identity

	EXPHAN_DSP_IDEN

	ZMQ named socket identity.

	dsp_to_radctrl_identity

	DSP_RADCTRL_IDEN

	ZMQ named socket identity.

	dsp_to_driver_identity

	DSP_DRIVER_IDEN

	ZMQ named socket identity.

	dsp_to_exphan_identity

	DSP_EXPHAN_IDEN

	ZMQ named socket identity.

	dsp_to_dw_identity

	DSP_DW_IDEN

	ZMQ named socket identity.

	dspbegin_to_brian_identity

	DSPBEGIN_BRIAN_IDEN

	ZMQ named socket identity.

	dspend_to_brian_identity

	DSPEND_BRIAN_IDEN

	ZMQ named socket identity.

	dw_to_dsp_identity

	DW_DSP_IDEN

	ZMQ named socket identity.

	dw_to_radctrl_identity

	DW_RADCTRL_IDEN

	ZMQ named socket identity.

	brian_to_radctrl_identity

	BRIAN_RADCTRL_IDEN

	ZMQ named socket identity.

	brian_to_driver_identity

	BRIAN_DRIVER_IDEN

	ZMQ named socket identity.

	brian_to_dspbegin_identity

	BRIAN_DSPBEGIN_IDEN

	ZMQ named socket identity.

	brian_to_dspend_identity

	BRIAN_DSPEND_IDEN

	ZMQ named socket identity.

	ringbuffer_name

	data_ringbuffer

	Shared memory name for ringbuffer.

	ringbuffer_size_bytes

	200.00E+06

	Size in bytes to allocate for each
ringbuffer.

	data_directory

	/data/borealis_data

	Location of output data files.

Borealis Data Files

Data Generation

The Borealis software module data_write.py is responsible for writing all data files.
Different flags can be given to the module to write various types of files. See the documentation for Borealis Processes

Borealis writes files into HDF5 format [https://portal.hdfgroup.org/display/support]. Examples of how to use HDF5 files can
be found here for multiple languages:
HDF5 Examples [https://portal.hdfgroup.org/display/HDF5/HDF5+Examples]

The following data file types can be generated by Borealis in HDF5 format. The standard Borealis release mode run by the scheduler
generates HDF5 files for rawacf, antennas_iq and bfiq.

Borealis filetypes

These are the Borealis filetypes produced by the radar software, from most processed to least processed.

	
	rawacf
	The correlated data from the main and interferometer arrays. Produced by Borealis in release mode.

	
	bfiq
	The beamformed iq data from both arrays. Produced by Borealis in release mode.

	
	antennas_iq
	The iq data from every antenna. Produced by Borealis in release mode.

	
	rawrf
	The unfiltered, full receive bandwidth data from every antenna. Only produced by Borealis in debug modes.

Post-processed dmap files can be created from the hdf5 rawacf or bfiq files using the pyDARN package [https://github.com/superdarn/pydarn].

For more information on the data files and the fields stored within them, check the data file information for the correct Borealis software version.

Borealis current version

The Borealis software version can affect the data fields in the file format so be sure to check if your data is of the most
up to date version. The current Borealis software version is v0.5.

	rawacf v0.5
	rawacf array files

	rawacf site files

	Site/Array Restructuring

	rawacf to rawacf SDARN (DMap) Conversion

	bfiq v0.5
	bfiq array files

	bfiq site files

	Site/Array Restructuring

	bfiq to iqdat SDARN (DMap) Conversion

	antennas_iq v0.5
	antennas_iq array files

	antennas_iq site files

	Site/Array Restructuring

	rawrf v0.5
	rawrf site files

	Site/Array Restructuring

Previous versions

	v0.2, v0.3, and v0.4 follow the v0.4 format.

Reading Data

To read the files in python, we recommend using PyTables [https://www.pytables.org/] or deepdish [https://deepdish.readthedocs.io/en/latest/index.html] packages.
If you are looking to generate SuperDARN standard plots, we recommend using the the pyDARN package [https://github.com/superdarn/pydarn], which can
read Borealis files specifically. After converting to dmap, standard SuperDARN plots including RTI plots and fan plot can be produced.

Data Storage and Deletion

Borealis file sizes can add up quickly to fill all available hard drive space,
especially if antennas_iq and/or bfiq data types are being generated. However,
it is convenient and recommended to keep a backlog of lower level data products
such as antennas_iq for a period of time. These files are useful for debugging
hardware issues and reproducing RAWACF files.

A utility script is scheduled via cron to check the filesystem that Borealis files are written to.
If the filesystem usage is too high, it searches for and deletes the oldest files in a loop until
the filesystem usage goes below the threshold. See the SuperDARN Canada
data flow repository [https://github.com/SuperDARNCanada/data_flow] for more information.

In order to prevent system failure due to hard drives filling up, a method for deleting the oldest
data files is employed for SuperDARN Canada radars. This is referred to as rotating the files.

rawacf v0.5

This is the most up to date version of this file format produced by Borealis version 0.5, the current version.

For data files from previous Borealis software versions, see here [https://borealis.readthedocs.io/en/latest/borealis_data.html#previous-versions].

The pydarn format class for this format is BorealisRawacf found in the borealis_formats [https://github.com/SuperDARN/pydarn/blob/master/pydarn/io/borealis/borealis_formats.py].

The rawacf format is intended to hold beamformed, averaged, correlated data.

Both site files and array-restructured files exist for this file type. Both are described below.

rawacf array files

Array restructured files are produced after the radar has finished writing a file and contain record data in multi-dimensional arrays so as to avoid repeated values, shorten the read time, and improve human readability. Fields that are unique to the record are written as arrays where the first dimension is equal to the number of records recorded. Other fields that are unique to the slice or experiment (and are therefore repeated for all records) are written only once.

The group names in these files are the field names themselves, greatly reducing the number of group names in the file when compared to site files and making the file much more human readable.

The naming convention of the rawacf array-structured files are:

[YYYYmmDD].[HHMM].[SS].[station_id].[slice_id].rawacf.hdf5

For example: 20191105.1400.02.sas.0.rawacf.hdf5

This is the file that began writing at 14:00:02 UT on November 5 2019 at the Saskatoon site, and it provides data for slice 0 of the experiment that ran at that time. It has been array restructured because it does not have a .site designation at the end of the filename.

These files are zlib compressed which is native to hdf5 and no decompression is necessary before reading using your hdf5 library.

The file fields in the rawacf array files are:

	
FIELD NAME

type

[dimensions]

	description

	
averaging_method

unicode

	
A string describing the averaging method.

Default is ‘mean’ but an experiment can

set this to ‘median’ to get the median of

all sequences in an integration period,

and other methods to combine all

sequences in an integration period could

be added in the future.

	
beam_azms

float64

[num_records x

max_num_beams]

	
A list of the beam azimuths for each beam

in degrees off boresite. Note that this

is padded with zeroes for any record

which has num_beams less than the

max_num_beams. The num_beams field should

be used to read the correct number of

beams for each record.

	
beam_nums

uint32

[num_records x

max_num_beams]

	
A list of beam numbers used in this slice

in this record. Note that this is padded

with zeroes for any record which has

num_beams less than the max_num_beams.

The num_beams field should be used to

read the correct number of beams for each

record.

	
blanked_samples

uint32

[num_records x

max_num_blanked_samples]

	
Samples that should be blanked because

they occurred during transmission times,

given by sample number (index into

decimated data). Can differ from the

pulses array due to multiple slices in a

single sequence and can differ from

record to record if a new slice is added.

	
borealis_git_hash

unicode

	
Identifies the version of Borealis that

made this data. Contains git commit hash

characters. Typically begins with the

latest git tag of the software.

	
correlation_descriptors

unicode

[4]

	
Denotes what each correlation dimension

(in main_acfs, intf_acfs, xcfs)

represents. = ‘num_records’,

‘max_num_beams’, ‘num_ranges’, ‘num_lags’

	
data_normalization_factor

float32

	
Scale of all the filters used,

multiplied, for a total scale to

normalize the data by.

	
experiment_comment

unicode

	
Comment provided in experiment about the

experiment as a whole.

	
experiment_id

int64

	
Number used to identify the experiment.

	
experiment_name

unicode

	
Name of the experiment file.

	
first_range

float32

	
Distance to use for first range in km.

	
first_range_rtt

float32

	
Round trip time of flight to first range

in microseconds.

	
freq

uint32

	
The frequency used for this experiment,

in kHz. This is the frequency the data

has been filtered to.

	
int_time

float32

[num_records]

	
Integration time in seconds.

	
intf_acfs

complex64

[num_records x

max_num_beams x

num_ranges x

num_lags]

	
Interferometer array correlations. Note

that records that do not have num_beams =

max_num_beams will have padded zeros. The

num_beams array should be used to

determine the correct number of beams to

read for the record.

	
intf_antenna_count

uint32

	
Number of interferometer array antennas

	
lags

uint32

[number of lags, 2]

	
The lags created from two pulses in the

pulses array. Values have to be from

pulses array. The lag number is lag[1] -

lag[0] for each lag pair.

	
main_acfs

complex64

[num_records x

max_num_beams x

num_ranges x

num_lags]

	
Main array correlations. Note

that records that do not have num_beams =

max_num_beams will have padded zeros. The

num_beams array should be used to

determine the correct number of beams to

read for the record.

	
main_antenna_count

uint32

	
Number of main array antennas

	
noise_at_freq

float64

[num_records x

max_num_sequences]

	
Noise at the receive frequency, with

dimension = number of sequences.

20191114: not currently implemented and

filled with zeros. Still a TODO. Note

that records that do not have

num_sequences = max_num_sequences will

have padded zeros. The num_sequences

array should be used to determine the

correct number of sequences to read for

the record.

	
num_beams

uint32

[num_records]

	
The number of beams calculated for each

record. Allows the user to correctly read

the data up to the correct number and

remove the padded zeros in the data

array.

	
num_blanked_samples

uint32

[num_records]

	
The number of blanked samples for each

record.

	
num_sequences

int64

[num_records]

	
Number of sampling periods (equivalent to

number sequences transmitted) in the

integration time for each record. Allows

the user to correctly read the data up to

the correct number and remove the padded

zeros in the data array.

	
num_slices

int64

[num_records]

	
Number of slices used simultaneously in

the record by the experiment. If more

than 1, data should exist in another file

for the same time period as that record

for the other slice.

	
pulses

uint32

[number of pulses]

	
The pulse sequence in units of the

tau_spacing.

	
range_sep

float32

	
Range gate separation (conversion from

time (1/rx_sample_rate) to equivalent

distance between samples), in km.

	
rx_sample_rate

float64

	
Sampling rate of the samples in this

file’s data in Hz.

	
samples_data_type

unicode

	
C data type of the samples, provided for

user friendliness. = ‘complex float’

	
scan_start_marker

bool

[num_records]

	
Designates if the record is the first in

a scan (scan is defined by the

experiment).

	
scheduling_mode

unicode

	
The mode being run during this time

period (ex. ‘common’, ‘special’,

‘discretionary’).

	
slice_comment

unicode

	
Additional text comment that describes

the slice written in this file.

	
slice_id

uint32

	
The slice id of this file.

	
slice_interfacing

unicode

[num_records]

	
The interfacing of this slice to

other slices for each record. String

representation of the python dictionary

of {slice : interface_type, … }. Can

differ between records if slices updated.

	
sqn_timestamps

float64

[num_records x

max_num_sequences]

	
A list of GPS timestamps corresponding to

the beginning of transmission for each

sampling period in the integration time.

These timestamps come back from the USRP

driver and the USRPs are GPS disciplined

and synchronized using the Octoclock.

Provided in milliseconds since epoch.

Note that records that do not have

num_sequences = max_num_sequences will

have padded zeros. The num_sequences

array should be used to determine the

correct number of sequences to read for

the record.

	
station

unicode

	
Three-letter radar identifier.

	
tau_spacing

uint32

	
The minimum spacing between pulses in

microseconds. Spacing between pulses is

always a multiple of this.

	
tx_pulse_len

uint32

	
Length of the transmit pulse in

microseconds.

	
xcfs

complex64

[num_records x

max_num_beams x

num_ranges x

num_lags]

	
Cross correlations of interferometer to

main array. Note

that records that do not have num_beams =

max_num_beams will have padded zeros. The

num_beams array should be used to

determine the correct number of beams to

read for the record.

rawacf site files

Site files are produced by the Borealis code package and have the data in a record by record style format. In site files, the hdf5 group names (ie record names) are given as the timestamp in ms past epoch of the first sequence or sampling period recorded in the record.

The naming convention of the rawacf site-structured files are:

[YYYYmmDD].[HHMM].[SS].[station_id].[slice_id].rawacf.hdf5.site

For example: 20191105.1400.02.sas.0.rawacf.hdf5.site
This is the file that began writing at 14:00:02 UT on November 5 2019 at the Saskatoon site, and it provides data for slice 0 of the experiment that ran at that time.

These files are often bzipped after they are produced.

The file fields under the record name in rawacf site files are:

	
Field name

type

	description

	
averaging_method

unicode

	
A string describing the averaging method.

Default is ‘mean’ but an experiment can

set this to ‘median’ to get the median of

all sequences in an integration period,

and other methods to combine all

sequences in an integration period could

be added in the future.

	
beam_azms

[float64,]

	
A list of the beam azimuths for each

beam in degrees off boresite.

	
beam_nums

[uint32,]

	
A list of beam numbers used in this slice

in this record.

	
blanked_samples

[uint32,]

	
Samples that should be blanked because

they occurred during transmission times,

given by sample number (index into

decimated data). Can differ from the

pulses array due to multiple slices in a

single sequence.

	
borealis_git_hash

unicode

	
Identifies the version of Borealis that

made this data. Contains git commit hash

characters. Typically begins with the

latest git tag of the software.

	
correlation_descriptors

[unicode,]

	
Denotes what each correlation dimension

(in main_acfs, intf_acfs, xcfs)

represents. (‘num_beams, ‘num_ranges’,

‘num_lags’)

	
correlation_dimensions

[uint32,]

	
The dimensions in which to reshape the

acf or xcf datasets. Dimensions

correspond to correlation_descriptors.

	
data_normalization_factor

float32

	
Scale of all the filters used, multiplied

for a total scale to normalize the data

by.

	
experiment_comment

unicode

	
Comment provided in experiment about the

experiment as a whole.

	
experiment_id

int64

	
Number used to identify the experiment.

	
experiment_name

unicode

	
Name of the experiment file.

	
first_range

float32

	
Distance to use for first range in km.

	
first_range_rtt

float32

	
Round trip time of flight to first range

in microseconds.

	
freq

uint32

	
The frequency used for this experiment,

in kHz. This is the frequency the data

has been filtered to.

	
int_time

float32

	
Integration time in seconds.

	
intf_acfs

[complex64,]

	
Interferometer array correlations.

	
intf_antenna_count

uint32

	
Number of interferometer array antennas

	
lags

[[uint32,],]

	
The lags created from two pulses in the

pulses array. Dimensions are number of

lags x 2. Values have to be from pulses

array. The lag number is lag[1] - lag[0]

for each lag pair.

	
main_acfs

[complex64,]

	
Main array correlations.

	
main_antenna_count

uint32

	
Number of main array antennas

	
noise_at_freq

[float64,]

	
Noise at the receive frequency, with

dimension = number of sequences.

20191114: not currently implemented and

filled with zeros. Still a TODO.

	
num_sequences

int64

	
Number of sampling periods (equivalent to

number sequences transmitted) in the

integration time.

	
num_slices

int64

	
Number of slices used simultaneously in

this record by the experiment. If more

than 1, data should exist in another file

for this time period for the other slice.

	
pulses

[uint32,]

	
The pulse sequence in units of the

tau_spacing.

	
range_sep

float32

	
Range gate separation (conversion from

time (1/rx_sample_rate) to equivalent

distance between samples), in km.

	
rx_sample_rate

float64

	
Sampling rate of the samples in this

file’s data in Hz.

	
samples_data_type

unicode

	
C data type of the samples, provided for

user friendliness. = ‘complex float’

	
scan_start_marker

bool

	
Designates if the record is the first in

a scan (scan is defined by the

experiment).

	
scheduling_mode

unicode

	
The mode being run during this time

period (ex. ‘common’, ‘special’,

‘discretionary’).

	
slice_comment

unicode

	
Additional text comment that describes

the slice written in this file.

	
slice_id

uint32

	
The slice id of this file.

	
slice_interfacing

unicode

	
The interfacing of this slice to

other slices. String representation of

the python dictionary of

{slice : interface_type, … }

	
sqn_timestamps

[float64,]

	
A list of GPS timestamps corresponding to

the beginning of transmission for each

sampling period in the integration time.

These timestamps come from the USRP

driver and the USRPs are GPS disciplined

and synchronized using the Octoclock.

Provided in milliseconds since epoch.

	
station

unicode

	
Three-letter radar identifier.

	
tau_spacing

uint32

	
The minimum spacing between pulses in

microseconds. Spacing between pulses is

always a multiple of this.

	
tx_pulse_len

uint32

	
Length of the transmit pulse in

microseconds.

	
xcfs

[complex64,]

	
Cross correlations of interferometer to

main array.

Site/Array Restructuring

File restructuring to array files is done using an additional code package. Currently, this code is housed within pyDARN [https://github.com/SuperDARN/pydarn]. It is expected that this code will be separated to its own IO code package in the near future.

The site to array file restructuring occurs in the borealis BaseFormat _site_to_array class method, and array to site restructuring is done in the same class _array_to_site method. Both can be found here [https://github.com/SuperDARN/pydarn/blob/master/pydarn/io/borealis/borealis_formats.py].

rawacf to rawacf SDARN (DMap) Conversion

Conversion to SDARN IO (DMap rawacf) is available but can fail based on experiment complexity. The conversion also reduces the precision of the data due to conversion from complex floats to int of all samples. Similar precision is lost in timestamps.

HDF5 is a much more user-friendly format and we encourage the use of this data if possible. Please reach out if you have questions on how to use the Borealis rawacf files.

The mapping to rawacf dmap files is completed as follows:

	rawacf_mapping

rawacf_mapping

RAWACF SDARN FIELDS

This conversion is done in pydarn IO here in the __convert_rawacf_record method: Link to Source [https://github.com/SuperDARN/pydarn/blob/master/pydarn/io/borealis/borealis_convert.py]

	
SDARN DMAP FIELD NAME

type

SDARN description

	Borealis Conversion

	
radar.revision.major

char

Major version number

	
borealis_git_hash major version number

or 255 if not a commit with a version tag

	
radar.revision.minor

char

Minor version number

	
borealis_git_hash minor version number

or 255 if not a commit with a version tag

	
origin.code

char

Code indicating origin of data

	
= 100, this can be used as a flag that the

origin code was Borealis

	
origin.time

string

ASCII representation of when

the data was generated

	
timestamp_of_write conversion

	
origin.command

string

The command line or control

program used to generate the

data

	
Borealis vXXX + borealis_git_hash +

experiment_name

	
cp

short

Control program identifier

	
experiment_id, truncated to short

	
stid

short

Station identifier

	
station conversion

	
time.yr

short

Year

	
sqn_timestamps [0] conversion

	
time.mo

short

Month

	
sqn_timestamps [0] conversion

	
time.dy

short

Day

	
sqn_timestamps [0] conversion

	
time.hr

short

Hour

	
sqn_timestamps [0] conversion

	
time.mt

short

Minute

	
sqn_timestamps [0] conversion

	
time.sc

short

Second

	
sqn_timestamps [0] conversion

	
time.us

short

Microsecond

	
sqn_timestamps [0] conversion

	
txpow

short

Transmitted power (kW)

	
= -1 (filler)

	
nave

short

Number of pulse sequences

transmitted

	
num_sequences

	
atten

short

Attenuation level

	
= 0 (filler)

	
lagfr

short

Lag to first range

(microseconds)

	
first_range_rtt

	
smsep

short

Sample separation

(microseconds)

	
(rx_sample_rate)^ -1

	
ercod

short

Error code

	
= 0 (filler)

	
stat.agc

short

AGC status word

	
= 0 (filler)

	
stat.lopwr

short

LOPWR status word

	
= 0 (filler)

	
noise.search

float

Calculated noise from clear

frequency search

	
noise_at_freq [0] conversion

	
noise.mean

float

Average noise across frequency

band

	
= 0 (filler)

	
channel

short

Channel number for a stereo

radar (zero for all others)

	
slice_id

	
bmnum

short

Beam number

	
beam_nums [i]

	
bmazm

float

Beam azimuth

	
beam_azms [i]

	
scan

short

Scan flag

	
scan_start_marker (0 or 1)

	
offset

short

Offset between channels for a

stereo radar (zero for all

others)

	
= 0 (filler)

	
rxrise

short

Receiver rise time

(microseconds)

	
= 0.0

	
intt.sc

short

Whole number of seconds of

integration time.

	
int_time conversion

	
intt.us

short

Fractional number of

microseconds of integration

time

	
int_time conversion

	
txpl

short

Transmit pulse length

(microseconds)

	
tx_pulse_len

	
mpinc

short

Multi-pulse increment

(microseconds)

	
tau_spacing

	
mppul

short

Number of pulses in sequence

	
len(pulses)

	
mplgs

short

Number of lags in sequence

	
lags.shape[0]

	
nrang

short

Number of ranges

	
correlation_dimensions[1]

	
frang

short

Distance to first range

(kilometers)

	
first_range

	
rsep

short

Range separation (kilometers)

	
range_sep

	
xcf

short

XCF flag

	
If xcfs exist, then =1

	
tfreq

short

Transmitted frequency

	
freq

	
mxpwr

int

Maximum power (kHz)

	
= -1 (filler)

	
lvmax

int

Maximum noise level allowed

	
= 20000 (filler)

	
rawacf.revision.major

int

Major version number of the

rawacf format

	
= 255

	
rawacf.revision.minor

int

Minor version number of the

rawacf format

	
= 255

	
combf

string

Comment buffer

Comment buffer

	
Original Borealis filename, ‘converted

from Borealis file beam number ’ X,

number of beams in this original record

(len(beam_nums)), experiment_comment and

slice_comment from the file

	
thr

float

Thresholding factor

	
= 0.0 (filler)

	
ptab[mppul]

short

Pulse table

	
pulses

	
ltab[2][mplgs]

short

Lag table

	
np.transpose(lags)

	
pwr0[nrang]

[float]

Lag zero power for main

	
Calculated from main_acfs

	
slist[0-nrang]

[short]

List of stored ranges, length

dependent on SNR. Lists the

range gate of each stored ACF

	
range(0,*correlation_dimensions*.size[1])

	
acfd[2][mplgs][0-nrang]

[short]

Calculated ACFs

	
main_acfs conversion, real and imag

	
xcfd[2][mplgs][0-nrang]

[short]

Calculated XCFs

	
xcfs conversion, real and imag

If blanked_samples != ptab, or pulse_phase_offset contains non-zeroes, no conversion to dmap rawacf is possible.

bfiq v0.5

This is the most up to date version of this file format produced by Borealis version 0.5, the current version.

For data files from previous Borealis software versions, see here [https://borealis.readthedocs.io/en/latest/borealis_data.html#previous-versions].

The pydarn format class for this format is BorealisBfiq found in the borealis_formats [https://github.com/SuperDARN/pydarn/blob/master/pydarn/io/borealis/borealis_formats.py].

The bfiq format is intended to hold beamformed I and Q data for the main and interferometer arrays. The data is not averaged.

Both site files and array-restructured files exist for this file type. Both are described below.

bfiq array files

Array restructured files are produced after the radar has finished writing a file and contain record data in multi-dimensional arrays so as to avoid repeated values, shorten the read time, and improve human readability. Fields that are unique to the record are written as arrays where the first dimension is equal to the number of records recorded. Other fields that are unique to the slice or experiment (and are therefore repeated for all records) are written only once.

The group names in these files are the field names themselves, greatly reducing the number of group names in the file when compared to site files and making the file much more human readable.

The naming convention of the bfiq array-structured files are:

[YYYYmmDD].[HHMM].[SS].[station_id].[slice_id].bfiq.hdf5

For example: 20191105.1400.02.sas.0.bfiq.hdf5

This is the file that began writing at 14:00:02 UT on November 5 2019 at the Saskatoon site, and it provides data for slice 0 of the experiment that ran at that time. It has been array restructured because it does not have a .site designation at the end of the filename.

These files are zlib compressed which is native to hdf5 and no decompression is necessary before reading using your hdf5 library.

The file fields in the bfiq array files are:

	
FIELD NAME

type

[dimensions]

	description

	
antenna_arrays_order

unicode

[num_antenna_arrays]

	
States what order the data is in and

describes the data layout for the

num_antenna_arrays data dimension

	
beam_azms

float64

[num_records x

max_num_beams]

	
A list of the beam azimuths for each beam

in degrees off boresite. Note that this

is padded with zeroes for any record

which has num_beams less than the

max_num_beams. The num_beams field should

be used to read the correct number of

beams for each record.

	
beam_nums

uint32

[num_records x

max_num_beams]

	
A list of beam numbers used in this slice

in this record. Note that this is padded

with zeroes for any record which has

num_beams less than the max_num_beams.

The num_beams field should be used to

read the correct number of beams for each

record.

	
blanked_samples

uint32

[num_records x

max_num_blanked_samples]

	
Samples that should be blanked because

they occurred during transmission times,

given by sample number (index into

decimated data). Can differ from the

pulses array due to multiple slices in a

single sequence and can differ from

record to record if a new slice is added.

	
borealis_git_hash

unicode

	
Identifies the version of Borealis that

made this data. Contains git commit hash

characters. Typically begins with the

latest git tag of the software.

	
data

complex64

[num_records x

num_antenna_arrays x

max_num_sequences x

max_num_beams x

num_samps]

	
A set of samples (complex float) at given

sample rate. Note that records that do not

have num_sequences = max_num_sequences or

num_beams = max_num_beams will have

padded zeros. The num_sequences and

num_beams arrays should be used to

determine the correct number of sequences

and beams to read for the record.

	
data_descriptors

unicode

[5]

	
Denotes what each data dimension

represents. = ‘num_records’,

‘num_antenna_arrays’,

‘max_num_sequences’, ‘max_num_beams’,

‘num_samps’

	
data_normalization_factor

float32

	
Scale of all the filters used,

multiplied, for a total scale to

normalize the data by.

	
experiment_comment

unicode

	
Comment provided in experiment about the

experiment as a whole.

	
experiment_id

int64

	
Number used to identify the experiment.

	
experiment_name

unicode

	
Name of the experiment file.

	
first_range

float32

	
Distance to use for first range in km.

	
first_range_rtt

float32

	
Round trip time of flight to first range

in microseconds.

	
freq

uint32

	
The frequency used for this experiment,

in kHz. This is the frequency the data

has been filtered to.

	
int_time

float32

[num_records]

	
Integration time in seconds.

	
intf_antenna_count

uint32

	
Number of interferometer array antennas

	
lags

uint32

[number of lags, 2]

	
The lags created from two pulses in the

pulses array. Values have to be from

pulses array. The lag number is lag[1] -

lag[0] for each lag pair.

	
main_antenna_count

uint32

	
Number of main array antennas

	
noise_at_freq

float64

[num_records x

max_num_sequences]

	
Noise at the receive frequency, with

dimension = number of sequences.

20191114: not currently implemented and

filled with zeros. Still a TODO. Note

that records that do not have

num_sequences = max_num_sequences will

have padded zeros. The num_sequences

array should be used to determine the

correct number of sequences to read for

the record.

	
num_beams

uint32

[num_records]

	
The number of beams calculated for each

record. Allows the user to correctly read

the data up to the correct number and

remove the padded zeros in the data

array.

	
num_blanked_samples

uint32

[num_records]

	
The number of blanked samples for each

record.

	
num_ranges

uint32

	
Number of ranges to calculate

correlations for.

	
num_samps

uint32

	
Number of samples in the sampling

period. Each sequence has its own

sampling period. Will also be provided

as the last data_dimension value.

	
num_sequences

int64

[num_records]

	
Number of sampling periods (equivalent to

number sequences transmitted) in the

integration time for each record. Allows

the user to correctly read the data up to

the correct number and remove the padded

zeros in the data array.

	
num_slices

int64

[num_records]

	
Number of slices used simultaneously in

the record by the experiment. If more

than 1, data should exist in another file

for the same time period as that record

for the other slice.

	
pulse_phase_offset

float32

[number of pulses]

	
For pulse encoding phase, in degrees

offset. Contains one phase offset per

pulse in pulses.

	
pulses

uint32

[number of pulses]

	
The pulse sequence in units of the

tau_spacing.

	
range_sep

float32

	
Range gate separation (conversion from

time (1/rx_sample_rate) to equivalent

distance between samples), in km.

	
rx_sample_rate

float64

	
Sampling rate of the samples in this

file’s data in Hz.

	
samples_data_type

unicode

	
C data type of the samples, provided for

user friendliness. = ‘complex float’

	
scan_start_marker

bool

[num_records]

	
Designates if the record is the first in

a scan (scan is defined by the

experiment).

	
scheduling_mode

unicode

	
The mode being run during this time

period (ex. ‘common’, ‘special’,

‘discretionary’).

	
slice_comment

unicode

	
Additional text comment that describes

the slice written in this file. The slice

number of this file is provided in the

filename.

	
slice_id

uint32

	
The slice id of this file.

	
slice_interfacing

unicode

[num_records]

	
The interfacing of this slice to

other slices for each record. String

representation of the python dictionary

of {slice : interface_type, … }. Can

differ between records if slices updated.

	
sqn_timestamps

float64

[num_records x

max_num_sequences]

	
A list of GPS timestamps corresponding to

the beginning of transmission for each

sampling period in the integration time.

These timestamps come back from the USRP

driver and the USRPs are GPS disciplined

and synchronized using the Octoclock.

Provided in milliseconds since epoch.

Note that records that do not have

num_sequences = max_num_sequences will

have padded zeros. The num_sequences

array should be used to determine the

correct number of sequences to read for

the record.

	
station

unicode

	
Three-letter radar identifier.

	
tau_spacing

uint32

	
The minimum spacing between pulses in

microseconds. Spacing between pulses is

always a multiple of this.

	
tx_pulse_len

uint32

	
Length of the transmit pulse in

microseconds.

bfiq site files

Site files are produced by the Borealis code package and have the data in a record by record style format. In site files, the hdf5 group names (ie record names) are given as the timestamp in ms past epoch of the first sequence or sampling period recorded in the record.

The naming convention of the bfiq site-structured files are:

[YYYYmmDD].[HHMM].[SS].[station_id].[slice_id].bfiq.hdf5.site

For example: 20191105.1400.02.sas.0.bfiq.hdf5.site
This is the file that began writing at 14:00:02 UT on November 5 2019 at the Saskatoon site, and it provides data for slice 0 of the experiment that ran at that time.

These files are often bzipped after they are produced.

The file fields under the record name in bfiq site files are:

	
Field name

type

	description

	
antenna_arrays_order

[unicode,]

	
States what order the data is in and

describes the data layout for the

num_antenna_arrays data dimension

	
beam_azms

[float64,]

	
A list of the beam azimuths for each

beam in degrees off boresite.

	
beam_nums

[uint32,]

	
A list of beam numbers used in this slice

in this record.

	
blanked_samples

[uint32,]

	
Samples that should be blanked because

they occurred during transmission times,

given by sample number (index into

decimated data). Can differ from the

pulses array due to multiple slices in a

single sequence.

	
borealis_git_hash

unicode

	
Identifies the version of Borealis that

made this data. Contains git commit hash

characters. Typically begins with the

latest git tag of the software.

	
data

[complex64,]

	
A contiguous set of samples (complex

float) at given sample rate. Needs to be

reshaped by data_dimensions to be

correctly read.

	
data_descriptors

[unicode,]

	
Denotes what each data dimension

represents. = ‘num_antenna_arrays’,

‘num_sequences’, ‘num_beams’, ‘num_samps’

for bfiq

	
data_dimensions

[uint32,]

	
The dimensions in which to reshape the

data. Dimensions correspond to

data_descriptors.

	
data_normalization_factor

float32

	
Scale of all the filters used, multiplied

for a total scale to normalize the data

by.

	
experiment_comment

unicode

	
Comment provided in experiment about the

experiment as a whole.

	
experiment_id

int64

	
Number used to identify the experiment.

	
experiment_name

unicode

	
Name of the experiment file.

	
first_range

float32

	
Distance to use for first range in km.

	
first_range_rtt

float32

	
Round trip time of flight to first range

in microseconds.

	
freq

uint32

	
The frequency used for this experiment,

in kHz. This is the frequency the data

has been filtered to.

	
int_time

float32

	
Integration time in seconds.

	
intf_antenna_count

uint32

	
Number of interferometer array antennas

	
lags

[[uint32,],]

	
The lags created from two pulses in the

pulses array. Dimensions are number of

lags x 2. Values have to be from pulses

array. The lag number is lag[1] - lag[0]

for each lag pair.

	
main_antenna_count

uint32

	
Number of main array antennas

	
noise_at_freq

[float64,]

	
Noise at the receive frequency, with

dimension = number of sequences.

20191114: not currently implemented and

filled with zeros. Still a TODO.

	
num_ranges

uint32

	
Number of ranges to calculate

correlations for.

	
num_samps

uint32

	
Number of samples in the sampling

period. Each sequence has its own

sampling period. Will also be provided

as the last data_dimension value.

	
num_sequences

int64

	
Number of sampling periods (equivalent to

number sequences transmitted) in the

integration time.

	
num_slices

int64

	
Number of slices used simultaneously in

this record by the experiment. If more

than 1, data should exist in another file

for this time period for the other slice.

	
pulse_phase_offset

[float32,]

	
For pulse encoding phase, in degrees

offset. Contains one phase offset per

pulse in pulses.

	
pulses

[uint32,]

	
The pulse sequence in units of the

tau_spacing.

	
range_sep

float32

	
Range gate separation (conversion from

time (1/rx_sample_rate) to equivalent

distance between samples), in km.

	
rx_sample_rate

float64

	
Sampling rate of the samples in this

file’s data in Hz.

	
samples_data_type

unicode

	
C data type of the samples, provided for

user friendliness. = ‘complex float’

	
scan_start_marker

bool

	
Designates if the record is the first in

a scan (scan is defined by the

experiment).

	
scheduling_mode

unicode

	
The mode being run during this time

period (ex. ‘common’, ‘special’,

‘discretionary’).

	
slice_comment

unicode

	
Additional text comment that describes

the slice written in this file.

	
slice_id

uint32

	
The slice id of this file.

	
slice_interfacing

unicode

	
The interfacing of this slice to

other slices. String representation of

the python dictionary of

{slice : interface_type, … }

	
sqn_timestamps

[float64,]

	
A list of GPS timestamps corresponding to

the beginning of transmission for each

sampling period in the integration time.

These timestamps come from the USRP

driver and the USRPs are GPS disciplined

and synchronized using the Octoclock.

Provided in milliseconds since epoch.

	
station

unicode

	
Three-letter radar identifier.

	
tau_spacing

uint32

	
The minimum spacing between pulses in

microseconds. Spacing between pulses is

always a multiple of this.

	
tx_pulse_len

uint32

	
Length of the transmit pulse in

microseconds.

Site/Array Restructuring

File restructuring to array files is done using an additional code package. Currently, this code is housed within pyDARN [https://github.com/SuperDARN/pydarn]. It is expected that this code will be separated to its own IO code package in the near future.

The site to array file restructuring occurs in the borealis BaseFormat _site_to_array class method, and array to site restructuring is done in the same class _array_to_site method. Both can be found here [https://github.com/SuperDARN/pydarn/blob/master/pydarn/io/borealis/borealis_formats.py].

bfiq to iqdat SDARN (DMap) Conversion

Conversion to SDARN IO (DMap iqdat) is available but can fail based on experiment complexity. The conversion also reduces the precision of the data due to conversion from complex floats to int of all samples. Similar precision is lost in timestamps.

HDF5 is a much more user-friendly format and we encourage the use of this data if possible. Please reach out if you have questions on how to use the Borealis bfiq files.

The mapping from bfiq to iqdat dmap files is completed as follows:

	iqdat_mapping

iqdat_mapping

IQDAT SDARN FIELDS

This conversion is done in pydarn IO here in the __convert_bfiq_record method: Link to Source [https://github.com/SuperDARN/pydarn/blob/master/pydarn/io/borealis/borealis_convert.py]

	
SDARN DMAP FIELD NAME

type

SDARN description

	Borealis Conversion

	
radar.revision.major

char

Major version number

	
borealis_git_hash major version number

or 255 if not a commit with a version tag

	
radar.revision.minor

char

Minor version number

	
borealis_git_hash minor version number

or 255 if not a commit with a version tag

	
origin.code

char

Code indicating origin of data

	
= 100, this can be used as a flag that the

origin code was Borealis

	
origin.time

string

ASCII representation of when

the data was generated

	
timestamp_of_write conversion

	
origin.command

string

The command line or control

program used to generate the

data

	
Borealis vXXX + borealis_git_hash +

experiment_name

	
cp

short

Control program identifier

	
experiment_id, truncated to short

	
stid

short

Station identifier

	
station conversion

	
time.yr

short

Year

	
sqn_timestamps [0] conversion

	
time.mo

short

Month

	
sqn_timestamps [0] conversion

	
time.dy

short

Day

	
sqn_timestamps [0] conversion

	
time.hr

short

Hour

	
sqn_timestamps [0] conversion

	
time.mt

short

Minute

	
sqn_timestamps [0] conversion

	
time.sc

short

Second

	
sqn_timestamps [0] conversion

	
time.us

short

Microsecond

	
sqn_timestamps [0] conversion

	
txpow

short

Transmitted power (kW)

	
= -1 (filler)

	
nave

short

Number of pulse sequences

transmitted

	
num_sequences

	
atten

short

Attenuation level

	
= 0 (filler)

	
lagfr

short

Lag to first range

(microseconds)

	
first_range_rtt

	
smsep

short

Sample separation

(microseconds)

	
(rx_sample_rate)^ -1

	
ercod

short

Error code

	
= 0 (filler)

	
stat.agc

short

AGC status word

	
= 0 (filler)

	
stat.lopwr

short

LOPWR status word

	
= 0 (filler)

	
noise.search

float

Calculated noise from clear

frequency search

	
noise_at_freq [0] conversion

	
noise.mean

float

Average noise across frequency

band

	
= 0 (filler)

	
channel

short

Channel number for a stereo

radar (zero for all others)

	
slice_id

	
bmnum

short

Beam number

	
beam_nums [i]

	
bmazm

float

Beam azimuth

	
beam_azms [i]

	
scan

short

Scan flag

	
scan_start_marker (0 or 1)

	
offset

short

Offset between channels for a

stereo radar (zero for all

others)

	
= 0 (filler)

	
rxrise

short

Receiver rise time

(microseconds)

	
= 0.0

	
intt.sc

short

Whole number of seconds of

integration time.

	
int_time conversion

	
intt.us

short

Fractional number of

microseconds of integration

time

	
int_time conversion

	
txpl

short

Transmit pulse length

(microseconds)

	
tx_pulse_len

	
mpinc

short

Multi-pulse increment

(microseconds)

	
tau_spacing

	
mppul

short

Number of pulses in sequence

	
len(pulses)

	
mplgs

short

Number of lags in sequence

	
lags.shape[0]

	
nrang

short

Number of ranges

	
num_ranges

	
frang

short

Distance to first range

(kilometers)

	
first_range

	
rsep

short

Range separation (kilometers)

	
range_sep

	
xcf

short

XCF flag

	
If xcfs exist, then =1

	
tfreq

short

Transmitted frequency

	
freq

	
mxpwr

int

Maximum power (kHz)

	
= -1 (filler)

	
lvmax

int

Maximum noise level allowed

	
= 20000 (filler)

	
iqdata.revision.major

int

Major version number of the

iqdata library

	
= 1 (meaning Borealis conversion)

	
iqdata.revision.minor

int

Minor version number of the

iqdata library

	
= 0 (Borealis conversion)

	
combf

string

Comment buffer

	
Original Borealis filename, ‘converted

from Borealis file ’ , number of beams in

this original record (len(beam_nums)),

experiment_comment and slice_comment

from the file

	
seqnum

int

Number of pulse sequences

transmitted

	
num_sequences

	
chnnum

int

Number of channels sampled

(both I and Q quadrature

samples)

	
len(antenna_arrays_order)

	
smpnum

int

Number of samples taken per

sequence

	
num_samps

	
skpnum

int

Number of samples to skip

before the first valid sample

	
math.ceil(first_range/range_sep). In

theory this should =0 due to Borealis

functionality(no rise time).

However make_raw in RST requires this to

be indicative of the first range so we

provide this.

	
ptab[mppul]

short

Pulse table

	
pulses

	
ltab[2][mplgs]

short

Lag table

	
np.transpose(lags)

	
tsc[seqnum]

int

Seconds component of time past

epoch of pulse sequence

	
sqn_timestamps conversion

	
tus[seqnum]

int

Microsecond component of time

past epoch of pulse sequence

	
sqn_timestamps conversion

	
tatten[seqnum]

short

Attenuator setting for each

pulse sequence

	
= [0,0…] (fillers)

	
tnoise[seqnum]

float

Noise value for each pulse

sequence

	
noise_at_freq conversion

	
toff[seqnum]

int

Offset into the sample buffer

for each pulse sequence

	
Offset = 2 * num_samps *

len(antenna_arrays_order), toff = [i *

offset for i in range(v[‘num_sequences’])]

	
tsze[seqnum]

int

Number of words stored for this

pulse sequence

	
= [offset, offset, offset….]

	
data[totnum]

int

Array of raw I and Q samples,

arranged: [[[smpnum(i),

smpnum(q)] * chnnum] * seqnum],

so totnum =

2*seqnum*chnnum*smpnum

	
Data conversion for correct dimensions

and scaled to max int (-32768 to 32767)

If blanked_samples != ptab, or pulse_phase_offset contains non-zeroes, no conversion to iqdat is possible.

antennas_iq v0.5

This is the most up to date version of this file format produced by Borealis version 0.5, the current version.

For data files from previous Borealis software versions, see here [https://borealis.readthedocs.io/en/latest/borealis_data.html#previous-versions].

The pydarn format class for this format is BorealisAntennasIq found in the borealis_formats [https://github.com/SuperDARN/pydarn/blob/master/pydarn/io/borealis/borealis_formats.py].

The antennas_iq format is intended to hold individual antennas I and Q data. The data is filtered, but is not averaged.

Both site files and array-restructured files exist for this file type. Both are described below.

antennas_iq array files

Array restructured files are produced after the radar has finished writing a file and contain record data in multi-dimensional arrays so as to avoid repeated values, shorten the read time, and improve human readability. Fields that are unique to the record are written as arrays where the first dimension is equal to the number of records recorded. Other fields that are unique to the slice or experiment (and are therefore repeated for all records) are written only once.

The group names in these files are the field names themselves, greatly reducing the number of group names in the file when compared to site files and making the file much more human readable.

The naming convention of the antennas_iq array-structured files are:

[YYYYmmDD].[HHMM].[SS].[station_id].[slice_id].antennas_iq.hdf5

For example: 20191105.1400.02.sas.0.antennas_iq.hdf5

This is the file that began writing at 14:00:02 UT on November 5 2019 at the Saskatoon site, and it provides data for slice 0 of the experiment that ran at that time. It has been array restructured because it does not have a .site designation at the end of the filename.

These files are zlib compressed which is native to hdf5 and no decompression is necessary before reading using your hdf5 library.

The file fields in the antennas_iq array files are:

	
FIELD NAME

type

[dimensions]

	description

	
antenna_arrays_order

unicode

[num_antennas]

	
States what order the data is in and

describes the data layout for the

num_antennas data dimension

Antennas are recorded main array

ascending and then interferometer array

ascending

	
beam_azms

float64

[num_records x

max_num_beams]

	
A list of the beam azimuths for each beam

in degrees off boresite. Note that this

is padded with zeroes for any record

which has num_beams less than the

max_num_beams. The num_beams field should

be used to read the correct number of

beams for each record.

	
beam_nums

uint32

[num_records x

max_num_beams]

	
A list of beam numbers used in this slice

in this record. Note that this is padded

with zeroes for any record which has

num_beams less than the max_num_beams.

The num_beams field should be used to

read the correct number of beams for each

record.

	
blanked_samples

uint32

[num_records x

max_num_blanked_samples]

	
Samples that should be blanked because

they occurred during transmission times,

given by sample number (index into

decimated data). Can differ from the

pulses array due to multiple slices in a

single sequence and can differ from

record to record if a new slice is added.

	
borealis_git_hash

unicode

	
Identifies the version of Borealis that

made this data. Contains git commit hash

characters. Typically begins with the

latest git tag of the software.

	
data

complex64

[num_records x

num_antennas x

max_num_sequences x

num_samps]

	
A set of samples (complex float) at given

sample rate. Note that records that do not

have num_sequences = max_num_sequences

will have padded zeros. The num_sequences

array should be used to determine the

correct number of sequences to read for

the record.

	
data_descriptors

unicode

[4]

	
Denotes what each data dimension

represents. = ‘num_records’,

‘num_antennas’, ‘max_num_sequences’,

‘num_samps’

	
data_normalization_factor

float32

	
Scale of all the filters used,

multiplied, for a total scale to

normalize the data by.

	
experiment_comment

unicode

	
Comment provided in experiment about the

experiment as a whole.

	
experiment_id

int64

	
Number used to identify the experiment.

	
experiment_name

unicode

	
Name of the experiment file.

	
freq

uint32

	
The frequency used for this experiment,

in kHz. This is the frequency the data

has been filtered to.

	
int_time

float32

[num_records]

	
Integration time in seconds.

	
intf_antenna_count

uint32

	
Number of interferometer array antennas

	
main_antenna_count

uint32

	
Number of main array antennas

	
noise_at_freq

float64

[num_records x

max_num_sequences]

	
Noise at the receive frequency, with

dimension = number of sequences.

20191114: not currently implemented and

filled with zeros. Still a TODO. Note

that records that do not have

num_sequences = max_num_sequences will

have padded zeros. The num_sequences

array should be used to determine the

correct number of sequences to read for

the record.

	
num_beams

uint32

[num_records]

	
The number of beams to calculate for each

record.

	
num_blanked_samples

uint32

[num_records]

	
The number of blanked samples for each

record.

	
num_samps

uint32

	
Number of samples in the sampling

period. Each sequence has its own

sampling period. Will also be provided

as the last data_dimension value.

	
num_sequences

int64

[num_records]

	
Number of sampling periods (equivalent to

number sequences transmitted) in the

integration time for each record. Allows

the user to correctly read the data up to

the correct number and remove the padded

zeros in the data array.

	
num_slices

int64

[num_records]

	
Number of slices used simultaneously in

the record by the experiment. If more

than 1, data should exist in another file

for the same time period as that record

for the other slice.

	
pulse_phase_offset

float32

[number of pulses]

	
For pulse encoding phase, in degrees

offset. Contains one phase offset per

pulse in pulses.

	
pulses

uint32

[number of pulses]

	
The pulse sequence in units of the

tau_spacing.

	
rx_sample_rate

float64

	
Sampling rate of the samples in this

file’s data in Hz.

	
samples_data_type

unicode

	
C data type of the samples, provided for

user friendliness. = ‘complex float’

	
scan_start_marker

bool

[num_records]

	
Designates if the record is the first in

a scan (scan is defined by the

experiment).

	
scheduling_mode

unicode

	
The mode being run during this time

period (ex. ‘common’, ‘special’,

‘discretionary’).

	
slice_comment

unicode

	
Additional text comment that describes

the slice written in this file. The slice

number of this file is provided in the

filename.

	
slice_id

uint32

	
The slice id of this file.

	
slice_interfacing

unicode

[num_records]

	
The interfacing of this slice to

other slices for each record. String

representation of the python dictionary

of {slice : interface_type, … }. Can

differ between records if slices updated.

	
sqn_timestamps

float64

[num_records x

max_num_sequences]

	
A list of GPS timestamps corresponding to

the beginning of transmission for each

sampling period in the integration time.

These timestamps come back from the USRP

driver and the USRPs are GPS disciplined

and synchronized using the Octoclock.

Provided in milliseconds since epoch.

Note that records that do not have

num_sequences = max_num_sequences will

have padded zeros. The num_sequences

array should be used to determine the

correct number of sequences to read for

the record.

	
station

unicode

	
Three-letter radar identifier.

	
tau_spacing

uint32

	
The minimum spacing between pulses in

microseconds. Spacing between pulses is

always a multiple of this.

	
tx_pulse_len

uint32

	
Length of the transmit pulse in

microseconds.

antennas_iq site files

Site files are produced by the Borealis code package and have the data in a record by record style format. In site files, the hdf5 group names (ie record names) are given as the timestamp in ms past epoch of the first sequence or sampling period recorded in the record.

The naming convention of the antennas_iq site-structured files are:

[YYYYmmDD].[HHMM].[SS].[station_id].[slice_id].antennas_iq.hdf5.site

For example: 20191105.1400.02.sas.0.antennas_iq.hdf5.site
This is the file that began writing at 14:00:02 UT on November 5 2019 at the Saskatoon site, and it provides data for slice 0 of the experiment that ran at that time.

These files are often bzipped after they are produced.

The file fields under the record name in antennas_iq site files are:

	
Field name

type

	description

	
antenna_arrays_order

[unicode,]

	
States what order the data is in and

describes the data layout for the

num_antennas data dimension. Antennas are

recorded main array ascending and then

interferometer array ascending.

	
beam_azms

[float64,]

	
A list of the beam azimuths for each

beam in degrees off boresite.

	
beam_nums

[uint32,]

	
A list of beam numbers used in this slice

in this record.

	
blanked_samples

[uint32,]

	
Samples that should be blanked because

they occurred during transmission times,

given by sample number (index into

decimated data). Can differ from the

pulses array due to multiple slices in a

single sequence.

	
borealis_git_hash

unicode

	
Identifies the version of Borealis that

made this data. Contains git commit hash

characters. Typically begins with the

latest git tag of the software.

	
data

[complex64,]

	
A contiguous set of samples (complex

float) at given sample rate. Needs to be

reshaped by data_dimensions to be

correctly read.

	
data_descriptors

[unicode,]

	
Denotes what each data dimension

represents. = ‘num_antennas’,

‘num_sequences’, ‘num_samps’ for

antennas_iq

	
data_dimensions

[uint32,]

	
The dimensions in which to reshape the

data. Dimensions correspond to

data_descriptors.

	
data_normalization_factor

float32

	
Scale of all the filters used, multiplied

for a total scale to normalize the data

by.

	
experiment_comment

unicode

	
Comment provided in experiment about the

experiment as a whole.

	
experiment_id

int64

	
Number used to identify the experiment.

	
experiment_name

unicode

	
Name of the experiment file.

	
freq

uint32

	
The frequency used for this experiment,

in kHz. This is the frequency the data

has been filtered to.

	
int_time

float32

	
Integration time in seconds.

	
intf_antenna_count

uint32

	
Number of interferometer array antennas

	
main_antenna_count

uint32

	
Number of main array antennas

	
noise_at_freq

[float64,]

	
Noise at the receive frequency, with

dimension = number of sequences.

20191114: not currently implemented and

filled with zeros. Still a TODO.

	
num_samps

uint32

	
Number of samples in the sampling

period. Each sequence has its own

sampling period. Will also be provided

as the last data_dimension value.

	
num_sequences

int64

	
Number of sampling periods (equivalent to

number sequences transmitted) in the

integration time.

	
num_slices

int64

	
Number of slices used simultaneously in

this record by the experiment. If more

than 1, data should exist in another file

for this time period for the other slice.

	
pulse_phase_offset

[float32,]

	
For pulse encoding phase, in degrees

offset. Contains one phase offset per

pulse in pulses.

	
pulses

[uint32,]

	
The pulse sequence in units of the

tau_spacing.

	
rx_sample_rate

float64

	
Sampling rate of the samples in this

file’s data in Hz.

	
samples_data_type

unicode

	
C data type of the samples, provided for

user friendliness. = ‘complex float’

	
scan_start_marker

bool

	
Designates if the record is the first in

a scan (scan is defined by the

experiment).

	
scheduling_mode

unicode

	
The mode being run during this time

period (ex. ‘common’, ‘special’,

‘discretionary’).

	
slice_comment

unicode

	
Additional text comment that describes

the slice written in this file.

	
slice_id

uint32

	
The slice id of this file.

	
slice_interfacing

unicode

	
The interfacing of this slice to

other slices. String representation of

the python dictionary of

{slice : interface_type, … }

	
sqn_timestamps

[float64,]

	
A list of GPS timestamps corresponding to

the beginning of transmission for each

sampling period in the integration time.

These timestamps come from the USRP

driver and the USRPs are GPS disciplined

and synchronized using the Octoclock.

Provided in milliseconds since epoch.

	
station

unicode

	
Three-letter radar identifier.

	
tau_spacing

uint32

	
The minimum spacing between pulses in

microseconds. Spacing between pulses is

always a multiple of this.

	
tx_pulse_len

uint32

	
Length of the transmit pulse in

microseconds.

Site/Array Restructuring

File restructuring to array files is done using an additional code package. Currently, this code is housed within pyDARN [https://github.com/SuperDARN/pydarn]. It is expected that this code will be separated to its own IO code package in the near future.

The site to array file restructuring occurs in the borealis BaseFormat _site_to_array class method, and array to site restructuring is done in the same class _array_to_site method. Both can be found here [https://github.com/SuperDARN/pydarn/blob/master/pydarn/io/borealis/borealis_formats.py].

rawrf v0.5

This is the most up to date version of this file format produced by Borealis version 0.5, the current version.

For data files from previous Borealis software versions, see here [https://borealis.readthedocs.io/en/latest/borealis_data.html#previous-versions].

The pydarn format class for this format is BorealisRawrf found in the borealis_formats [https://github.com/SuperDARN/pydarn/blob/master/pydarn/io/borealis/borealis_formats.py].

The rawrf format is intended to hold high bandwidth, non-filtered raw data from every antenna.

This format is only produced in a site-style, record by record format and is only available to be produced on request. Please note that this format
can cause radar operating delays and may reduce number of averages in an integration, for example.

rawrf site files

Site files are produced by the Borealis code package and have the data in a record by record style format. In site files, the hdf5 group names (ie record names) are given as the timestamp in ms past epoch of the first sequence or sampling period recorded in the record.

The naming convention of the rawrf site-structured files are:

[YYYYmmDD].[HHMM].[SS].[station_id].rawrf.hdf5.site

For example: 20191105.1400.02.sas.rawrf.hdf5.site

This is the file that began writing at 14:00:02 UT on November 5 2019 at the Saskatoon site, and it provides data the experiment that ran at that time.
Since rawrf is not filtered, this data does not need a slice identifier because it contains all the samples being taken at that time. Some familiarity
with the experiment may be necessary to understand the data, or some access to the other file types produced concurrently. This is primarily a debug
format for engineering purposes and should only be produced for special cases.

These files are often bzipped after they are produced.

The file fields under the record name in rawrf site files are:

	
Field name

type

	description

	
blanked_samples

uint32

[number of blanked

samples]

	
Samples that should be blanked because

they occurred during transmission times,

given by sample number (index into

decimated data). Can differ from the

pulses array due to multiple slices in a

single sequence.

	
borealis_git_hash

unicode

	
Identifies the version of Borealis that

made this data. Contains git commit hash

characters. Typically begins with the

latest git tag of the software.

	
data

[complex64,]

	
A contiguous set of samples (complex

float) at given sample rate. Needs to be

reshaped by data_dimensions to be

correctly read.

	
data_descriptors

[unicode,]

	
Denotes what each data dimension

represents. = ‘num_sequences’,

‘num_antennas’, ‘num_samps’ for

rawrf

	
data_dimensions

[uint32,]

	
The dimensions in which to reshape the

data. Dimensions correspond to

data_descriptors.

	
experiment_comment

unicode

	
Comment provided in experiment about the

experiment as a whole.

	
experiment_id

int64

	
Number used to identify the experiment.

	
experiment_name

unicode

	
Name of the experiment file.

	
int_time

float32

	
Integration time in seconds.

	
intf_antenna_count

uint32

	
Number of interferometer array antennas

	
main_antenna_count

uint32

	
Number of main array antennas

	
num_samps

uint32

	
Number of samples in the sampling

period. Each sequence has its own

sampling period. Will also be provided

as the last data_dimension value.

	
num_sequences

int64

	
Number of sampling periods (equivalent to

number sequences transmitted) in the

integration time.

	
num_slices

int64

	
Number of slices used simultaneously in

this record by the experiment. If more

than 1, data should exist in another file

for this time period for the other slice.

	
rx_center_freq

float64

	
Center frequency of the sampled data

in kHz.

	
rx_sample_rate

float64

	
Sampling rate of the samples in this

file’s data in Hz.

	
samples_data_type

unicode

	
C data type of the samples, provided for

user friendliness. = ‘complex float’

	
scan_start_marker

bool

	
Designates if the record is the first in

a scan (scan is defined by the

experiment).

	
scheduling_mode

unicode

	
The mode being run during this time

period (ex. ‘common’, ‘special’,

‘discretionary’).

	
sqn_timestamps

[float64,]

	
A list of GPS timestamps corresponding to

the beginning of transmission for each

sampling period in the integration time.

These timestamps come from the USRP

driver and the USRPs are GPS disciplined

and synchronized using the Octoclock.

Provided in milliseconds since epoch.

	
station

unicode

	
Three-letter radar identifier.

Site/Array Restructuring

File restructuring to array files is not done for this format.

Borealis Monitoring

The monitoring system implemented for Borealis is a custom configured installation of Nagios Core, working with NRPE. Nagios monitoring behaves according to objects defined in configuration files, all of which have copies in SuperDARN Canada’s Nagios repository.

Nagios

Nagios core runs as a service under apache2. It is easy to install, but a little tricky to configure for specific purposes. The program executes external plugins that obtain information from the system, and then displays the output on locally hosted webpage. Locally, where and which plugins are executed is determined by host and service objects specified in configuration files. This is also done with monitoring on remote machines, with one exception.

The remote server runs plugins using an a service called NRPE (Nagios Remote Plugin Executor). This process runs on port 566 by default, and sends plugin output over the network to the Nagios service running on the central host. The central host accepts this output through a plugin called check_nrpe, usage specified in the commands.cfg config file. This remote host output is then displayed normally alongside the local services.

In our configuration, remote hosts send information on services continuously, allowing connections from hosts specified in their nrpe.cfg file. To operate properly, both the hostname of the remote host, and that of the central Nagios host, must be included on this line.

The last key difference between NRPE and Nagios Core is that commands to be executed on the remote host are defined in that host’s nrpe.cfg file. Whereas commands executed by Nagios Core are defined in the commands.cfg by default.

Installation

Detailed instructions for installing Nagios Core on several operating systems can be found on Nagios’ website [https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/4/en/quickstart.html].

After installing, simply replace the configuration files with those found in this repository.

Installation of NRPE is similarly simple. Detailed instructions can be found in the NRPE.pdf file located in the monitoring folder along with our config files.

Lab Testing

Good lab tests to include before deployement include:

	Loopback tests at boresight
- allow you to see differences in channel power after digitizing
- can also verify that boxes are synchronized because boresite with

equal cable lengths to receive should give you the same output on
all antennas (phases should be the same, check with rawrf and antennas_iq)

	scripts are available under testing/borealis_tests/testing_utils/plot_borealis_hdf5_data/

	Logic analyzer tests with a transmitter

	Long-term reliability tests of software

	Scope output tests
- verify pulse shape of TX out
- verify GPIO signals (T/R)
- verify pulse distances

	Test for GPS lock on GPS Octoclock

	

Tools

NEC

A python script called nec_sd_generator.py in the tools/NEC Borealis directory contains
functionality to produce the correct geometry and other inputs for a NEC engine program like
4nec2 to simulate/model SuperDARN antenna arrays.

This script can be used to generate some common orientations of the SuperDARN antenna arrays
for use with a NEC engine. Some programs that can read NEC inputs are 4nec2 or eznec. This
script has been tested with the free, latest version of 4nec2, 5.8.17, updated January 2020 and
available here: https://www.qsl.net/4nec2/

In order to use this with 4nec2, simply open 4nec2 and go to File->Open 4nec2 in/out file and
select the file (it must end in ‘.nec’). Then hit F7 or go to the Calculate->NEC Output-data
option. Interpretations of the results are beyond the scope of this help message. Note that
4nec2 requires DOS line-endings, which is why this script outputs DOS line endings.

By default, if you run this script with no options, it will create TTFD main and interferometer
arrays with 21-wire reflectors, oriented like the Rankin Inlet radar with the main array in
front of the interferometer array. This can be changed with the –int-x-spacing, –int-y-spacing
and –int-z-spacing options which take in a floating point number of meters to offset the
interferometer from the main array in 3d space. By default, it is 100m behind (y == -100)
and centered in both x and z dimensions. Turn off the reflector via the –without-fence flag.
In summary, the boresite is in the +y direction, the arrays are typically along the x axis,
and the +z axis is distance from the ground.

The number of antennas in both the main and interferometer arrays are controlled via the
–antennas and –int_antennas options. Defaults are 16 and 4, like the Rankin Inlet array. Set
the –int_antennas value to 0 to remove the interferometer array.

The antenna spacing can be modified from the 15.24m default via the –antenna_spacing option.

The beam and frequency used can be changed from the defaults of boresite and 10.5MHz via the
–beam and –frequency options, which take floating point values.

Finally, you can provide a custom name for the file generated by this script using the
–output_file option. Just be aware that 4nec2 input file naming requirements are strict, no
periods, and it must end in ‘.nec’.

NOTE There are some options that are not supported yet, like log periodic arrays, yagi
arrays, as well as different power and phase inputs for the arrays. As well, baluns and
feedlines are not implemented, so the signal sources are currently modeled directly where
the balun would be on the antennas.

Here are two images that show what the default geometry looks like when importing the default
output file into 4nec2. In the first image you can see a wide bird’s eye view of the main and
interferometer arrays. In the second image you can see a close-up of the main array center two
antennas, with the 21 reflector wires in the background. The blue rectangles are the loads and the
pink circle on the antenna’s is the current source modeled in NEC.

[image: ttfd array, wide view, from 4nec2]
[image: ttfd array, closeup, from 4nec2]
If you calculate this array geometry with the defaults, you’ll see this window from 4nec2:
This shows the horizontal gain in red, and the vertical gain in blue. You’ll notice that the most
power is in the main lobe at 0 degrees off azimuth (boresite). This is effectively a beam 7.5
in the standard SuperDARN configuration and shows that the radar array has a F/B ratio of 22dB, a
beamwidth of 8 degrees and a gain of 17.47dB. Note this is at a frequency of 10.5MHz.

[image: ttfd array modeled in 4nec2]
So, why is this considered a tool? What happens when a transmitter goes down? What happens when
two transmitters go down? What about if the power output from one transmitter is half of what it
should be? How about phase errors? All of these questions are possible to answer with tools like
this one. Here’s a real example from Rankin Inlet, where transmitters #6 and #12 (indexed from 0)
are both down:

[image: _images/pattern.png]
[image: _images/pattern_no_tx6_no_tx12_boresite.png]
The above two images are generated for the radar at Rankin Inlet, the first image shows the standard
pattern if everything is working properly at boresite. The second image shows the pattern resulting
from transmitters #6 and #12 not contributing to the system. The effects are immediately visible
in the higher power sidelobes. The main lobe gain is reduced from 17.47dB to 16.92dB. The main lobe
remains the same shape and width in both azimuth and elevation angles.

[image: _images/pattern_bm1.png]
[image: _images/pattern_no_tx6_no_tx12_bm1.png]
The above two images are generated for the radar at Rankin Inlet, the first image shows the standard
pattern if everything is working properly at beam 1. The second image shows the pattern resulting
from transmitters #6 and #12 not contributing to the system. The effects are immediately visible
in the higher power sidelobes. The main lobe gain is reduced from 16.66dB to 16.13dB. The main lobe
remains the same shape but is slightly smaller (~1 degree) in elevation angle.

NTP

A python script called plot_ntp_stats.py located in the tools/NTP borealis directory contains
functionality that can be used to plot some common statistics that the ntpd program can produce.

It requires that you’ve set up ntpd to log statistics. Currently supported plots are basic,
but still useful. This script also requires the ntp configuration file to be able to
accurately calculate the Allan deviation for PPS drivers.

The Allan deviation can be plotted if you have a clockstats file. The subject of Allan
deviation is beyond the scope of this documentation, but it can give you an indication of
your short, mid and long-term stability of your oscillator. In short, if you see a negative
relationship between the y axis and the x axis that means that over the long term your
oscillator is more stable than it is over the short term. Phase noise and Allan deviation
are closely related.

Here is an example of an Allan deviation plot:

[image: NTP stats Allan Deviation plot]
Looking at the above image, it’s clear that the clock stats indicate the clock is more stable
the longer you view it. This is generally true for GPS disciplined clocks. If you have a piezo
crystal oscillator and generated an Allan deviation plot for it, you might see the opposite
relationship. Combining the two types of clocks into a GPS disciplined oscillator will get you
the best of both short and long term stability.

If you have a loopstats input file then you can plot two quantities:

	The ntpd estimated time offset from true time in seconds vs time smaller values are better.

	The ntpd estimated frequency offset in PPM from a ‘true oscillator’ (ideal UTC clock) vs time, smaller values are better.

Here are example plots of the loopstats offset and frequency offset:

[image: NTP stats loopstats offset]
[image: NTP stats loopstats freq offset]
If you have a peerstats input file then you can plot three quantities for each peer:

	The ntpd estimated time offset from true time in seconds vs time, smaller values mean ntpd thinks it’s closer to true time.

	The estimated round-trip time for ntpd packets vs time. Very small values would indicate the peer is on the local network.

	The dispersion value (seconds) indicates how spread out the offsets are for this particular peer.

Here are examples of the above three plots:

[image: NTP stats peerstats offset]
[image: NTP stats peerstats delay]
[image: NTP stats peerstats dispersion]
That dispersion plot looks like there are a few outliers, so lets zoom in on a smaller section:

[image: NTP stats peerstats dispersion zoom]

Common Failure Modes

Certain failures of the Borealis system can be generally attributed to a short list of common issues.

N200 Power loss

If the power to any N200 device that Borealis is currently using is disrupted for a brief time,
then the symptoms are typically:

	Driver message: “Timed out! RuntimeError fifo ctrl timed out looking for acks”

	The N200 that lost power will have all front panel aftermarket LEDs ON

	All other N200s will have the green RX LED ON.

	Radar stops

Restart the radar by:

	Ensuring the power is securely connected to all N200s

	/borealis/stop_radar.sh

	/borealis/start_radar.sh

N200 10MHz reference loss

If the 10MHz reference signal to any N200 device that Borealis is currently using is disrupted for
an extended time (beyond a few seconds) then the symptoms are:

	Continual ‘lates’ from the driver (‘L’ printed out continuously)

	REF locked front panel LED will be off for the N200 that lost 10MHz reference

	Upon reconnection of the 10MHz signal, the lates continue

	Radar continues

Restart the radar by:

	Ensuring the 10MHz reference is connected to all N200s

	/borealis/stop_radar.sh

	/borealis/start_radar.sh

N200 PPS reference loss

If the Pulse Per Second (PPS) reference signal to any N200 device that Borealis is currently using
is disrupted for an extended time (beyond a few seconds) then the symptoms are:

	None

N200 Ethernet loss

If the ethernet connection to any N200 device that Borealis is currently using is disrupted for
a brief time, the symptoms are typically:

	Borealis software hangs

	After some time, the aftermarket front panel LEDS turn yellow, indicating an IDLE situation

	Radar stops

Restart the radar by:

	Reconnecting the Ethernet

	/borealis/stop_radar.sh

	/borealis/start_radar.sh

Borealis Startup with N200 PPS reference missing

If the Pulse Per Second (PPS) reference signal to any N200 device that Borealis will use upon startup
is not connected, the symptoms are:

	Driver initialization doesn’t proceed past initialization of the N200s.

NOTE This is as expected as the driver is waiting for a PPS signal to set the time registers

Start the radar by:

	Ensure PPS signal is connected to each N200

Octoclock GPS Power loss

If the master Octoclock (octoclock-g) unit loses power, then it no longer supplies 10MHz and PPS
reference signals to the slave Octoclocks. The symptoms are:

	Octoclock slaves lose PPS and external 10MHz references (only the power LED is ON)

	All ref lock front panel LEDs on all N200s are OFF

	Continual lates from the driver (may take a few minutes for this symptom to manifest)

Start the radar by:

	Ensure Octoclock-g has power connected, and GPS antenna is connected

	/borealis/stop_radar.sh

	/borealis/start_radar.sh

	The driver will wait for GPS lock before initializing the N200s and starting the radar.

NOTE This may take a long time, and depends upon many factors including the antenna view of satellites, how long the
octoclock-g has been powered off, temperature, etc. In testing it locked within 20 minutes.

TXIO Cable disconnect from N200 or Transmitter

If the cable carrying differential signals to/from the transmitters and the N200s is removed, or
has failed in some way, then some possible results are:

	Transmitter will not transmit if the T/R signal is missing, this would be most obvious error

	Transmitter Low Power and AGC Status signals may not be valid when read from the N200 GPIO

	Transmitter may not be able to be placed into test mode

To fix this issue, ensure that all connectors are secured.

Shared memory full/Borealis unable to delete shared memory

NOTE If you’ve just installed Borealis, this may be caused by a missing h5copy binary.
Make sure you have it installed for your operating system. For new versions of Ubuntu this means
installing hdf5-tools. For OpenSuSe it means installing hdf5.

This may also be caused by the realtime/datawrite modules not deleting the individual
record files. This is tied to issue [#203](https://github.com/SuperDARNCanada/borealis/issues/203),
so check that the individual record files in the data output directory are being deleted
after being copied, and check the realtime logs to verify that realtime is running properly.

If the shared memory location written to by Borealis is full, or the shared memory files are unable
to be deleted by Borealis, then some possible results are:

	N200’s may be in RX only mode (green LED on front panel will be on only)

	Borealis may appear to halt when viewing the screen, or Borealis may be getting very
few sequences transmitted per integration time (1-2 within seconds)

	Signal processing may quietly die

	Data files, shared memory files and log files will cease being written

	To fix this issue and restart the radar:
	
	Make sure the h5copy binary is installed for your system

	remove all Borealis created files in the /dev/shm directory

	/borealis/stop_radar.sh

	/borealis/start_radar.sh

remote_server.py Segfaults, other programs segfault (core-dump)

This behaviour has been seen several times at the Saskatoon Borealis radar.
The root cause is unknown, but symptoms are:

	Radar stops with nothing obvious in the logs or on the screen session

	Attempting to start the radar with start_radar.sh results in a segfault

	Attempting to reboot the computer results in segfaults, bus errors, core dumps, etc

	To fix this issue and restart the radar:
	
	Power cycle the machine

‘CPU stuck’ messages from kernel, not possible to reboot

This behaviour has been seen once at the Clyde River Borealis radar. The message shown is:

Message from syslogd@clyborealis at Jun 15 00:47:18 … kernel:[9941421.042914] NMI watchdog: BUG:
soft lockup - CPU#19 stuck for 22s! [kworker/u56:0:16764]

The root cause is unknown, but symptoms are:

	Radar stops with the same message across all screens and terminals from the kernel

	Attempting to reboot the computer results in nothing happening etc

	To fix this issue and restart the radar:
	
	Power cycle the machine

Glossary

	array
	In SuperDARN data, the array data refers to the
data after it has been beamformed and all antennas are
combined into one array dataset. Typically the SuperDARN
antennas are divided into the main antenna array and one
interferometer antenna array.

	averaging period
	A time during which sequences are transmitted repeatedly
with the intent to average the received samples together.
Averaging period is often used interchangeably with
integration time.

	channel
	This term is often used to denote frequency channels,
but in USRPs it is also often used to denote the different
transmit and receive physical ports, in which case for
SuperDARN the different USRP channels would denote
different antennas. We have tried to avoid the use of this
term due to the ambiguity.

	device
	When using Ettus UHD API this refers to the
radio devices, or the N200s in the case of Borealis.

	integration time
	The time allocated for an averaging period. An averaging
period can be defined by the integration time (during which
as many sequences as possible are transmitted); or simply
by the number of sequences to transmit for the averaging
period. Integration time is often used interchangeably with
averaging period.

	host
	A local machine; for Borealis this is the Borealis computer.

	nave
	number of averages; equivalent to number of sequences
transmitted or number of sampling periods received.

	record
	A recorded subset of data. In SuperDARN data, a record
contains all data for an integration time, and in the
rawacf data the data is already averaged from the
integration time.

	sampling period
	The receive sampling time allocated to a transmitted
sequence.

	sequence
	A pulse sequence to be transmitted. Each sequence has
a sampling period, which extends past the length of
the pulse sequence for some time dependent on the
number of ranges to be sampled.

 Python Module Index

 e |
 r |
 s |
 u

 		 	

 		
 e	

 	[image: -]
 	
 experiment_handler	

 	
 	
 experiment_handler.experiment_handler	

 	[image: -]
 	
 experiment_prototype	

 	
 	
 experiment_prototype.experiment_exception	

 	
 	
 experiment_prototype.experiment_prototype	

 	
 	
 experiment_prototype.list_tests	

 	
 	
 experiment_prototype.scan_classes.averaging_periods	

 	
 	
 experiment_prototype.scan_classes.scan_class_base	

 	
 	
 experiment_prototype.scan_classes.scans	

 	
 	
 experiment_prototype.scan_classes.sequences	

 		 	

 		
 r	

 	[image: -]
 	
 radar_status	

 	
 	
 radar_status.radar_status	

 		 	

 		
 s	

 	[image: -]
 	
 sample_building	

 	
 	
 sample_building.sample_building	

 		 	

 		
 u	

 	[image: -]
 	
 utils	

 	
 	
 utils.experiment_options.experimentoptions	

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | X

Symbols

 	
 	[anonymous] (C++ type), [1]

A

 	
 	acf (experiment_prototype.experiment_prototype.ExperimentPrototype property), [1]

 	acfint (experiment_prototype.experiment_prototype.ExperimentPrototype property), [1]

 	add_slice() (experiment_prototype.experiment_prototype.ExperimentPrototype method), [1]

 	altitude (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	
 	analog_atten_stages (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	analog_rx_attenuator (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	analog_rx_rise (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	AveragingPeriod (class in experiment_prototype.scan_classes.averaging_periods)

B

 	
 	BANDPASS (C macro)

 	bandpass_decimate1024_wrapper (C++ function), [1]

 	bandpass_decimate2048_wrapper (C++ function), [1]

 	beam_sep (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	boresight (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	box_time (C++ member)

 	
 	brian_to_driver_identity (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	brian_to_dspbegin_identity (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	brian_to_dspend_identity (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	brian_to_radctrl_identity (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	build_pulse_transmit_data() (experiment_prototype.scan_classes.sequences.Sequence method)

 	build_scans() (experiment_prototype.experiment_prototype.ExperimentPrototype method), [1]

 	build_sequences() (experiment_prototype.scan_classes.averaging_periods.AveragingPeriod method)

C

 	
 	CalcError (C++ function)

 	CalcParms (C++ function)

 	calculate_first_rx_sample_time() (in module sample_building.sample_building)

 	calculated_combined_pulse_samples_length() (in module sample_building.sample_building)

 	call_decimate (C++ function)

 	check_new_slice_interfacing() (experiment_prototype.experiment_prototype.ExperimentPrototype method), [1]

 	check_slice() (experiment_prototype.experiment_prototype.ExperimentPrototype method), [1]

 	check_slice_minimum_requirements() (experiment_prototype.experiment_prototype.ExperimentPrototype method), [1]

 	check_slice_specific_requirements() (experiment_prototype.experiment_prototype.ExperimentPrototype method), [1]

 	COLOR_BLACK (C macro)

 	COLOR_BLUE (C macro)

 	COLOR_CYAN (C macro)

 	
 	COLOR_GREEN (C macro)

 	COLOR_MAGENTA (C macro)

 	COLOR_RED (C macro)

 	COLOR_WHITE (C macro)

 	COLOR_YELLOW (C macro)

 	comment_string (experiment_prototype.experiment_prototype.ExperimentPrototype property), [1]

 	ComputeA (C++ function)

 	CONST (C macro)

 	cpid (experiment_prototype.experiment_prototype.ExperimentPrototype property), [1]

 	create_debug_sequence_samples() (in module sample_building.sample_building)

 	create_uncombined_pulses() (in module sample_building.sample_building)

 	CreateDenseGrid (C++ function)

D

 	
 	DEBUG_MSG (C macro)

 	decimation_scheme (experiment_prototype.experiment_prototype.ExperimentPrototype property), [1]

 	DecimationType (C++ enum)

 	DecimationType::bandpass (C++ enumerator)

 	DecimationType::lowpass (C++ enumerator)

 	default_freq (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	del_slice() (experiment_prototype.experiment_prototype.ExperimentPrototype method), [1]

 	DIFFERENTIATOR (C macro)

 	driver_to_brian_identity (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	driver_to_dsp_identity (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	driver_to_radctrl_identity (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	DriverOptions (C++ class), [1]

 	DriverOptions::agc_signal_read_delay_ (C++ member)

 	DriverOptions::agc_st_ (C++ member)

 	DriverOptions::atr_0x_ (C++ member)

 	DriverOptions::atr_rx_ (C++ member)

 	DriverOptions::atr_tx_ (C++ member)

 	DriverOptions::atr_xx_ (C++ member)

 	DriverOptions::brian_to_driver_identity_ (C++ member)

 	DriverOptions::clk_addr_ (C++ member)

 	DriverOptions::cpu_ (C++ member)

 	DriverOptions::devices_ (C++ member)

 	DriverOptions::driver_to_brian_identity_ (C++ member)

 	DriverOptions::driver_to_dsp_identity_ (C++ member)

 	DriverOptions::driver_to_radctrl_identity_ (C++ member)

 	DriverOptions::DriverOptions (C++ function)

 	DriverOptions::dsp_to_driver_identity_ (C++ member)

 	DriverOptions::get_agc_signal_read_delay (C++ function)

 	DriverOptions::get_agc_st (C++ function)

 	DriverOptions::get_atr_0x (C++ function)

 	DriverOptions::get_atr_rx (C++ function)

 	DriverOptions::get_atr_tx (C++ function)

 	DriverOptions::get_atr_xx (C++ function)

 	DriverOptions::get_brian_to_driver_identity (C++ function)

 	DriverOptions::get_clk_addr (C++ function)

 	DriverOptions::get_cpu (C++ function)

 	DriverOptions::get_device_args (C++ function)

 	DriverOptions::get_driver_to_brian_identity (C++ function)

 	DriverOptions::get_driver_to_dsp_identity (C++ function)

 	DriverOptions::get_driver_to_radctrl_identity (C++ function)

 	DriverOptions::get_dsp_to_driver_identity (C++ function)

 	DriverOptions::get_gpio_bank_high (C++ function)

 	DriverOptions::get_gpio_bank_low (C++ function)

 	DriverOptions::get_interferometer_antenna_count (C++ function)

 	DriverOptions::get_interferometer_rx_subdev (C++ function)

 	DriverOptions::get_lo_pwr (C++ function)

 	DriverOptions::get_main_antenna_count (C++ function)

 	DriverOptions::get_main_rx_subdev (C++ function)

 	DriverOptions::get_otw (C++ function)

 	DriverOptions::get_pps (C++ function)

 	DriverOptions::get_radctrl_to_driver_identity (C++ function)

 	DriverOptions::get_receive_channels (C++ function)

 	DriverOptions::get_ref (C++ function)

 	DriverOptions::get_ringbuffer_name (C++ function)

 	DriverOptions::get_ringbuffer_size (C++ function)

 	DriverOptions::get_router_address (C++ function)

 	DriverOptions::get_test_mode (C++ function)

 	DriverOptions::get_tr_window_time (C++ function)

 	DriverOptions::get_transmit_channels (C++ function)

 	DriverOptions::get_tx_subdev (C++ function)

 	DriverOptions::gpio_bank_high_ (C++ member)

 	DriverOptions::gpio_bank_low_ (C++ member)

 	DriverOptions::interferometer_antenna_count_ (C++ member)

 	DriverOptions::interferometer_rx_subdev_ (C++ member)

 	DriverOptions::lo_pwr_ (C++ member)

 	DriverOptions::main_antenna_count_ (C++ member)

 	DriverOptions::main_rx_subdev_ (C++ member)

 	DriverOptions::otw_ (C++ member)

 	DriverOptions::pps_ (C++ member)

 	DriverOptions::radctrl_to_driver_identity_ (C++ member)

 	DriverOptions::receive_channels_ (C++ member)

 	DriverOptions::ref_ (C++ member)

 	DriverOptions::ringbuffer_name_ (C++ member)

 	DriverOptions::ringbuffer_size_bytes_ (C++ member)

 	DriverOptions::router_address_ (C++ member)

 	DriverOptions::test_mode_ (C++ member)

 	DriverOptions::tr_window_time_ (C++ member)

 	DriverOptions::transmit_channels_ (C++ member)

 	DriverOptions::tx_subdev_ (C++ member)

 	dsp_to_driver_identity (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	
 	dsp_to_dw_identity (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	dsp_to_exphan_identity (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	dsp_to_radctrl_identity (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	dspbegin_to_brian_identity (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	DSPCore (C++ class), [1]

 	DSPCore::allocate_and_copy_bandpass_filters (C++ function)

 	DSPCore::allocate_and_copy_frequencies (C++ function)

 	DSPCore::allocate_and_copy_host (C++ function)

 	DSPCore::allocate_and_copy_lowpass_filter (C++ function)

 	DSPCore::allocate_and_copy_rf_from_device (C++ function)

 	DSPCore::allocate_and_copy_rf_samples (C++ function)

 	DSPCore::allocate_output (C++ function)

 	DSPCore::beam_phases (C++ member)

 	DSPCore::bp_filters_d (C++ member)

 	DSPCore::clear_device_and_destroy (C++ function)

 	DSPCore::cuda_postprocessing_callback (C++ function)

 	DSPCore::decimate_kernel_timing_ms (C++ member)

 	DSPCore::dm_rates (C++ member)

 	DSPCore::driver_initialization_time (C++ member)

 	DSPCore::dsp_filters (C++ member)

 	DSPCore::DSPCore (C++ function)

 	DSPCore::filter_outputs_d (C++ member)

 	DSPCore::filter_outputs_h (C++ member)

 	DSPCore::filter_taps (C++ member)

 	DSPCore::freqs_d (C++ member)

 	DSPCore::get_beam_phases (C++ function)

 	DSPCore::get_bp_filters_p (C++ function)

 	DSPCore::get_cuda_stream (C++ function)

 	DSPCore::get_decimate_timing (C++ function)

 	DSPCore::get_dm_rates (C++ function)

 	DSPCore::get_driver_initialization_time (C++ function)

 	DSPCore::get_filter_outputs_h (C++ function)

 	DSPCore::get_filter_taps (C++ function)

 	DSPCore::get_frequencies_p (C++ function)

 	DSPCore::get_last_filter_output_d (C++ function)

 	DSPCore::get_last_lowpass_filter_d (C++ function)

 	DSPCore::get_lowpass_filters_d (C++ function)

 	DSPCore::get_num_antennas (C++ function)

 	DSPCore::get_num_rf_samples (C++ function)

 	DSPCore::get_output_sample_rate (C++ function)

 	DSPCore::get_rf_samples_h (C++ function)

 	DSPCore::get_rf_samples_p (C++ function)

 	DSPCore::get_rx_rate (C++ function)

 	DSPCore::get_samples_per_antenna (C++ function)

 	DSPCore::get_sequence_num (C++ function)

 	DSPCore::get_sequence_start_time (C++ function)

 	DSPCore::get_shared_memory_name (C++ function)

 	DSPCore::get_slice_info (C++ function)

 	DSPCore::get_total_timing (C++ function)

 	DSPCore::initial_memcpy_callback (C++ function)

 	DSPCore::initial_start (C++ member)

 	DSPCore::kernel_start (C++ member)

 	DSPCore::lp_filters_d (C++ member)

 	DSPCore::mem_time_ms (C++ member)

 	DSPCore::mem_transfer_end (C++ member)

 	DSPCore::num_antennas (C++ member)

 	DSPCore::num_rf_samples (C++ member)

 	DSPCore::output_sample_rate (C++ member)

 	DSPCore::rf_samples_d (C++ member)

 	DSPCore::rf_samples_h (C++ member)

 	DSPCore::ringbuffers (C++ member)

 	DSPCore::rx_rate (C++ member)

 	DSPCore::samples_per_antenna (C++ member)

 	DSPCore::send_ack (C++ function)

 	DSPCore::send_processed_data (C++ function)

 	DSPCore::send_timing (C++ function)

 	DSPCore::sequence_num (C++ member)

 	DSPCore::sequence_start_time (C++ member)

 	DSPCore::shm (C++ member)

 	DSPCore::sig_options (C++ member)

 	DSPCore::slice_info (C++ member)

 	DSPCore::start_decimate_timing (C++ function)

 	DSPCore::stop (C++ member)

 	DSPCore::stop_timing (C++ function)

 	DSPCore::stream (C++ member)

 	DSPCore::total_process_timing_ms (C++ member)

 	DSPCore::zmq_sockets (C++ member)

 	DSPCore::~DSPCore (C++ function)

 	dspend_to_brian_identity (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	dw_to_dsp_identity (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	dw_to_radctrl_identity (utils.experiment_options.experimentoptions.ExperimentOptions property)

E

 	
 	edit_slice() (experiment_prototype.experiment_prototype.ExperimentPrototype method), [1]

 	errortype() (in module radar_status.radar_status)

 	experiment_handler() (in module experiment_handler.experiment_handler)

 	
 experiment_handler.experiment_handler

 	module

 	experiment_name (experiment_prototype.experiment_prototype.ExperimentPrototype property), [1]

 	experiment_parser() (in module experiment_handler.experiment_handler)

 	
 experiment_prototype.experiment_exception

 	module, [1]

 	
 experiment_prototype.experiment_prototype

 	module, [1]

 	
 experiment_prototype.list_tests

 	module, [1]

 	
 	
 experiment_prototype.scan_classes.averaging_periods

 	module

 	
 experiment_prototype.scan_classes.scan_class_base

 	module

 	
 experiment_prototype.scan_classes.scans

 	module

 	
 experiment_prototype.scan_classes.sequences

 	module

 	ExperimentException, [1]

 	ExperimentOptions (class in utils.experiment_options.experimentoptions)

 	ExperimentPrototype (class in experiment_prototype.experiment_prototype), [1]

 	exphan_to_dsp_identity (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	exphan_to_radctrl_identity (utils.experiment_options.experimentoptions.ExperimentOptions property)

F

 	
 	Filtering (C++ class), [1]

 	Filtering::bandpass_taps (C++ member)

 	Filtering::fill_filter (C++ function)

 	Filtering::filter_taps (C++ member)

 	Filtering::Filtering (C++ function), [1]

 	
 	Filtering::get_mixed_filter_taps (C++ function)

 	Filtering::get_unmixed_filter_taps (C++ function)

 	Filtering::mix_first_stage_to_bandpass (C++ function)

 	Filtering::save_filter_to_file (C++ function)

 	find_blanks() (experiment_prototype.scan_classes.sequences.Sequence method)

 	FreqSample (C++ function)

G

 	
 	geo_lat (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	geo_long (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	get_gpu_properties (C++ function), [1]

 	get_inttime_slice_ids() (experiment_prototype.scan_classes.scans.Scan method)

 	get_phshift() (in module sample_building.sample_building)

 	get_samples() (in module sample_building.sample_building)

 	
 	get_scan_slice_ids() (experiment_prototype.experiment_prototype.ExperimentPrototype method), [1]

 	get_sequence_slice_ids() (experiment_prototype.scan_classes.averaging_periods.AveragingPeriod method)

 	get_slice_interfacing() (experiment_prototype.experiment_prototype.ExperimentPrototype method), [1]

 	get_wavetables() (in module sample_building.sample_building)

 	gpuErrchk (C macro)

 	GRIDDENSITY (C macro)

H

 	
 	has_duplicates() (in module experiment_prototype.list_tests), [1]

 	
 	hidden_key_set (in module experiment_prototype.experiment_prototype), [1]

 	HILBERT (C macro)

I

 	
 	InitialGuess (C++ function)

 	interface (experiment_prototype.experiment_prototype.ExperimentPrototype property), [1]

 	interface_types (in module experiment_prototype.experiment_prototype), [1]

 	interferometer_antenna_count (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	
 	interferometer_antenna_spacing (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	intf_offset (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	is_increasing() (in module experiment_prototype.list_tests), [1]

 	isDone (C++ function)

L

 	
 	lowpass_decimate1024_wrapper (C++ function), [1]

 	
 	lowpass_decimate2048_wrapper (C++ function), [1]

M

 	
 	main (C++ function)

 	main_antenna_count (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	main_antenna_spacing (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	make_pulse_samples() (in module sample_building.sample_building)

 	make_tx_samples (C++ function)

 	max_beams (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	max_freq (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	max_number_of_filter_taps_per_stage (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	max_number_of_filtering_stages (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	max_output_sample_rate (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	max_range_gates (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	max_rx_sample_rate (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	max_tx_sample_rate (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	max_usrp_dac_amplitude (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	MAXITERATIONS (C macro)

 	
 	min_freq (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	minimum_pulse_length (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	minimum_pulse_separation (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	minimum_tau_spacing_length (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	
 module

 	experiment_handler.experiment_handler

 	experiment_prototype.experiment_exception, [1]

 	experiment_prototype.experiment_prototype, [1]

 	experiment_prototype.list_tests, [1]

 	experiment_prototype.scan_classes.averaging_periods

 	experiment_prototype.scan_classes.scan_class_base

 	experiment_prototype.scan_classes.scans

 	experiment_prototype.scan_classes.sequences

 	radar_status.radar_status

 	sample_building.sample_building

 	utils.experiment_options.experimentoptions

N

 	
 	NEGATIVE (C macro)

 	
 	new_slice_id (experiment_prototype.experiment_prototype.ExperimentPrototype property), [1]

 	num_slices (experiment_prototype.experiment_prototype.ExperimentPrototype property), [1]

O

 	
 	Options (C++ class), [1]

 	options (experiment_prototype.experiment_prototype.ExperimentPrototype property), [1]

 	
 	Options::config_pt (C++ member)

 	Options::parse_config_file (C++ function)

 	output_rx_rate (experiment_prototype.experiment_prototype.ExperimentPrototype property), [1]

P

 	
 	phase_sign (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	Pi (C macro)

 	Pi2 (C macro)

 	POSITIVE (C macro)

 	postprocess (C++ function)

 	
 	prep_for_nested_scan_class() (experiment_prototype.scan_classes.scan_class_base.ScanClassBase method)

 	(experiment_prototype.scan_classes.scans.Scan method)

 	print_gpu_properties (C++ function), [1]

 	printing() (experiment_prototype.experiment_prototype.ExperimentPrototype method), [1]

 	(in module experiment_handler.experiment_handler)

 	pulse_ramp_time (utils.experiment_options.experimentoptions.ExperimentOptions property)

R

 	
 	
 radar_status.radar_status

 	module

 	RadarStatus (class in radar_status.radar_status)

 	radctrl_to_brian_identity (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	radctrl_to_driver_identity (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	radctrl_to_dsp_identity (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	radctrl_to_dw_identity (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	radctrl_to_exphan_identity (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	random_string (C++ function), [1]

 	receive (C++ function)

 	remez (C++ function), [1]

 	resolve_imaging_directions() (in module sample_building.sample_building)

 	restricted_ranges (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	retrieve_experiment() (in module experiment_handler.experiment_handler)

 	router_address (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	RUNTIME_MSG (C macro)

 	rx_azimuth_to_antenna_offset() (in module sample_building.sample_building)

 	rx_bandwidth (experiment_prototype.experiment_prototype.ExperimentPrototype property), [1]

 	rx_maxfreq (experiment_prototype.experiment_prototype.ExperimentPrototype property), [1]

 	rx_minfreq (experiment_prototype.experiment_prototype.ExperimentPrototype property), [1]

 	rx_slice (C++ struct), [1]

 	(C++ type)

 	rx_slice::beam_count (C++ member)

 	rx_slice::first_range (C++ member)

 	
 	rx_slice::lag (C++ struct), [1]

 	rx_slice::lag::lag (C++ function)

 	rx_slice::lag::lag_num (C++ member)

 	rx_slice::lag::pulse_1 (C++ member)

 	rx_slice::lag::pulse_2 (C++ member)

 	rx_slice::lags (C++ member)

 	rx_slice::num_ranges (C++ member)

 	rx_slice::range_sep (C++ member)

 	rx_slice::rx_freq (C++ member)

 	rx_slice::rx_slice (C++ function)

 	rx_slice::slice_id (C++ member)

 	rx_slice::tau_spacing (C++ member)

 	rxctrfreq (experiment_prototype.experiment_prototype.ExperimentPrototype property), [1]

 	RXMetadata (C++ class), [1]

 	RXMetadata::get_end_of_burst (C++ function)

 	RXMetadata::get_error_code (C++ function)

 	RXMetadata::get_fragment_offset (C++ function)

 	RXMetadata::get_has_time_spec (C++ function)

 	RXMetadata::get_md (C++ function)

 	RXMetadata::get_out_of_sequence (C++ function)

 	RXMetadata::get_start_of_burst (C++ function)

 	RXMetadata::get_time_spec (C++ function)

 	RXMetadata::md_ (C++ member)

 	RXMetadata::RXMetadata (C++ function)

 	rxrate (experiment_prototype.experiment_prototype.ExperimentPrototype property), [1]

S

 	
 	
 sample_building.sample_building

 	module

 	Scan (class in experiment_prototype.scan_classes.scans)

 	scan_objects (experiment_prototype.experiment_prototype.ExperimentPrototype property), [1]

 	ScanClassBase (class in experiment_prototype.scan_classes.scan_class_base)

 	scheduling_mode (experiment_prototype.experiment_prototype.ExperimentPrototype property), [1]

 	Search (C++ function)

 	self_check() (experiment_prototype.experiment_prototype.ExperimentPrototype method), [1]

 	send_experiment() (in module experiment_handler.experiment_handler)

 	Sequence (class in experiment_prototype.scan_classes.sequences)

 	set_beamdirdict() (experiment_prototype.scan_classes.averaging_periods.AveragingPeriod method)

 	set_slice_defaults() (experiment_prototype.experiment_prototype.ExperimentPrototype method), [1]

 	set_slice_identifiers() (experiment_prototype.experiment_prototype.ExperimentPrototype static method), [1]

 	SET_TIME_COMMAND_DELAY (C macro)

 	setup_slice() (experiment_prototype.experiment_prototype.ExperimentPrototype method), [1]

 	SharedMemoryHandler (C++ class), [1]

 	SharedMemoryHandler::create_shr_mem (C++ function)

 	SharedMemoryHandler::get_region_name (C++ function)

 	SharedMemoryHandler::get_shrmem_addr (C++ function)

 	SharedMemoryHandler::open_shr_mem (C++ function)

 	SharedMemoryHandler::region_name (C++ member)

 	SharedMemoryHandler::remove_shr_mem (C++ function)

 	SharedMemoryHandler::SharedMemoryHandler (C++ function), [1]

 	SharedMemoryHandler::shr_region (C++ member)

 	shift_samples() (in module sample_building.sample_building)

 	shr_mem_create (C++ function)

 	shr_mem_open (C++ function)

 	SignalProcessingOptions (C++ class), [1]

 	SignalProcessingOptions::brian_dspbegin_identity (C++ member)

 	SignalProcessingOptions::brian_dspend_identity (C++ member)

 	SignalProcessingOptions::driver_dsp_identity (C++ member)

 	SignalProcessingOptions::dsp_driver_identity (C++ member)

 	SignalProcessingOptions::dsp_dw_identity (C++ member)

 	SignalProcessingOptions::dsp_exphan_identity (C++ member)

 	
 	SignalProcessingOptions::dsp_to_radctrl_identity (C++ member)

 	SignalProcessingOptions::dspbegin_brian_identity (C++ member)

 	SignalProcessingOptions::dspend_brian_identity (C++ member)

 	SignalProcessingOptions::dw_dsp_identity (C++ member)

 	SignalProcessingOptions::exphan_dsp_identity (C++ member)

 	SignalProcessingOptions::get_brian_dspbegin_identity (C++ function)

 	SignalProcessingOptions::get_brian_dspend_identity (C++ function)

 	SignalProcessingOptions::get_driver_dsp_identity (C++ function)

 	SignalProcessingOptions::get_dsp_driver_identity (C++ function)

 	SignalProcessingOptions::get_dsp_dw_identity (C++ function)

 	SignalProcessingOptions::get_dsp_exphan_identity (C++ function)

 	SignalProcessingOptions::get_dsp_radctrl_identity (C++ function)

 	SignalProcessingOptions::get_dspbegin_brian_identity (C++ function)

 	SignalProcessingOptions::get_dspend_brian_identity (C++ function)

 	SignalProcessingOptions::get_dw_dsp_identity (C++ function)

 	SignalProcessingOptions::get_exphan_dsp_identity (C++ function)

 	SignalProcessingOptions::get_interferometer_antenna_count (C++ function)

 	SignalProcessingOptions::get_main_antenna_count (C++ function)

 	SignalProcessingOptions::get_radctrl_dsp_identity (C++ function)

 	SignalProcessingOptions::get_ringbuffer_name (C++ function)

 	SignalProcessingOptions::get_router_address (C++ function)

 	SignalProcessingOptions::interferometer_antenna_count (C++ member)

 	SignalProcessingOptions::main_antenna_count (C++ member)

 	SignalProcessingOptions::radctrl_dsp_identity (C++ member)

 	SignalProcessingOptions::ringbuffer_name (C++ member)

 	SignalProcessingOptions::router_address (C++ member)

 	SignalProcessingOptions::SignalProcessingOptions (C++ function)

 	site_id (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	slice_beam_directions_mapping() (experiment_prototype.experiment_prototype.ExperimentPrototype method), [1]

 	slice_combos_sorter() (experiment_prototype.scan_classes.scan_class_base.ScanClassBase static method)

 	slice_dict (experiment_prototype.experiment_prototype.ExperimentPrototype property), [1]

 	slice_ids (experiment_prototype.experiment_prototype.ExperimentPrototype property), [1]

 	slice_key_set (in module experiment_prototype.experiment_prototype), [1]

 	slice_keys (experiment_prototype.experiment_prototype.ExperimentPrototype property), [1]

 	statustype() (in module radar_status.radar_status)

T

 	
 	tdiff (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	throw_on_cuda_error (C++ function)

 	TIMEIT_IF_TRUE_OR_DEBUG (C macro)

 	tr_window_time (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	transmit (C++ function)

 	transmit_metadata (experiment_prototype.experiment_prototype.ExperimentPrototype property), [1]

 	TUNING_DELAY (C macro)

 	tx_bandwidth (experiment_prototype.experiment_prototype.ExperimentPrototype property), [1]

 	tx_maxfreq (experiment_prototype.experiment_prototype.ExperimentPrototype property), [1]

 	tx_minfreq (experiment_prototype.experiment_prototype.ExperimentPrototype property), [1]

 	
 	txctrfreq (experiment_prototype.experiment_prototype.ExperimentPrototype property), [1]

 	TXMetadata (C++ class), [1]

 	TXMetadata::get_md (C++ function)

 	TXMetadata::md_ (C++ member)

 	TXMetadata::set_end_of_burst (C++ function)

 	TXMetadata::set_has_time_spec (C++ function)

 	TXMetadata::set_start_of_burst (C++ function)

 	TXMetadata::set_time_spec (C++ function)

 	TXMetadata::TXMetadata (C++ function)

 	txrate (experiment_prototype.experiment_prototype.ExperimentPrototype property), [1]

U

 	
 	UHD_SAFE_MAIN (C++ function)

 	usage_msg() (in module experiment_handler.experiment_handler)

 	USRP (C++ class), [1]

 	USRP::agc_st_ (C++ member)

 	USRP::atr_0x_ (C++ member)

 	USRP::atr_rx_ (C++ member)

 	USRP::atr_tx_ (C++ member)

 	USRP::atr_xx_ (C++ member)

 	USRP::atten_mask_ (C++ member)

 	USRP::check_ref_locked (C++ function)

 	USRP::clear_command_time (C++ function)

 	USRP::clear_test_mode (C++ function)

 	USRP::create_usrp_rx_stream (C++ function)

 	USRP::create_usrp_tx_stream (C++ function)

 	USRP::get_current_usrp_time (C++ function)

 	USRP::get_gpio_bank_high_state (C++ function)

 	USRP::get_gpio_bank_low_state (C++ function)

 	USRP::get_rx_center_freq (C++ function)

 	USRP::get_rx_rate (C++ function)

 	USRP::get_tx_center_freq (C++ function)

 	USRP::get_tx_rate (C++ function)

 	USRP::get_usrp (C++ function)

 	USRP::get_usrp_rx_stream (C++ function)

 	USRP::get_usrp_tx_stream (C++ function)

 	USRP::gpio_bank_high_ (C++ member)

 	USRP::gpio_bank_low_ (C++ member)

 	USRP::invert_test_mode (C++ function)

 	
 	USRP::lo_pwr_ (C++ member)

 	USRP::rx_rate_ (C++ member)

 	USRP::rx_stream_ (C++ member)

 	USRP::scope_sync_mask_ (C++ member)

 	USRP::set_atr_gpios (C++ function)

 	USRP::set_command_time (C++ function)

 	USRP::set_input_gpios (C++ function)

 	USRP::set_interferometer_rx_subdev (C++ function)

 	USRP::set_main_rx_subdev (C++ function)

 	USRP::set_output_gpios (C++ function)

 	USRP::set_rx_center_freq (C++ function)

 	USRP::set_rx_rate (C++ function)

 	USRP::set_test_mode (C++ function)

 	USRP::set_time_source (C++ function)

 	USRP::set_tx_center_freq (C++ function)

 	USRP::set_tx_rate (C++ function)

 	USRP::set_tx_subdev (C++ function)

 	USRP::set_usrp_clock_source (C++ function)

 	USRP::test_mode_ (C++ member)

 	USRP::to_string (C++ function)

 	USRP::tr_mask_ (C++ member)

 	USRP::tx_rate_ (C++ member)

 	USRP::tx_stream_ (C++ member)

 	USRP::USRP (C++ function)

 	USRP::usrp_ (C++ member)

 	usrp_master_clock_rate (utils.experiment_options.experimentoptions.ExperimentOptions property)

 	
 utils.experiment_options.experimentoptions

 	module

V

 	
 	velocity_sign (utils.experiment_options.experimentoptions.ExperimentOptions property)

X

 	
 	xcf (experiment_prototype.experiment_prototype.ExperimentPrototype property), [1]

antennas_iq v0.4

The pydarn format class for this format is BorealisAntennasIqv0_4 found in the borealis_formats [https://github.com/SuperDARN/pydarn/blob/master/pydarn/io/borealis/borealis_formats.py].

Borealis software version 0.4 is out of date, see the current format of the antennas_iq files here [https://borealis.readthedocs.io/en/latest/borealis_data.html#borealis-current-version].

The antennas_iq format is intended to hold individual antennas I and Q data. The data is not averaged.

Both site files and array-restructured files exist for this file type. Both are described below.

antennas_iq array files

Array restructured files are produced after the radar has finished writing a file and contain record data in multi-dimensional arrays so as to avoid repeated values, shorten the read time, and improve human readability. Fields that are unique to the record are written as arrays where the first dimension is equal to the number of records recorded. Other fields that are unique to the slice or experiment (and are therefore repeated for all records) are written only once.

The group names in these files are the field names themselves, greatly reducing the number of group names in the file when compared to site files and making the file much more human readable.

The naming convention of the antennas_iq array-structured files are:

[YYYYmmDD].[HHMM].[SS].[station_id].[slice_id].antennas_iq.hdf5

For example: 20191105.1400.02.sas.0.antennas_iq.hdf5

This is the file that began writing at 14:00:02 UT on November 5 2019 at the Saskatoon site, and it provides data for slice 0 of the experiment that ran at that time. It has been array restructured because it does not have a .site designation at the end of the filename.

These files are zlib compressed which is native to hdf5 and no decompression is necessary before reading using your hdf5 library.

The file fields in the antennas_iq array files are:

	
FIELD NAME

type

[dimensions]

	description

	
antenna_arrays_order

unicode

[num_antennas]

	
States what order the data is in and

describes the data layout for the

num_antennas data dimension

Antennas are recorded main array

ascending and then interferometer array

ascending

	
beam_azms

float64

[num_records x

max_num_beams]

	
A list of the beam azimuths for each beam

in degrees off boresite. Note that this

is padded with zeroes for any record

which has num_beams less than the

max_num_beams. The num_beams field should

be used to read the correct number of

beams for each record.

	
beam_nums

uint32

[num_records x

max_num_beams]

	
A list of beam numbers used in this slice

in this record. Note that this is padded

with zeroes for any record which has

num_beams less than the max_num_beams.

The num_beams field should be used to

read the correct number of beams for each

record.

	
borealis_git_hash

unicode

	
Identifies the version of Borealis that

made this data. Contains git commit hash

characters. Typically begins with the

latest git tag of the software.

	
data

complex64

[num_records x

num_antennas x

max_num_sequences x

num_samps]

	
A set of samples (complex float) at given

sample rate. Note that records that do not

have num_sequences = max_num_sequences

will have padded zeros. The num_sequences

array should be used to determine the

correct number of sequences to read for

the record.

	
data_descriptors

unicode

[4]

	
Denotes what each data dimension

represents. = ‘num_records’,

‘num_antennas’, ‘max_num_sequences’,

‘num_samps’

	
data_normalization_factor

float32

	
Scale of all the filters used,

multiplied, for a total scale to

normalize the data by.

	
experiment_comment

unicode

	
Comment provided in experiment about the

experiment as a whole.

	
experiment_id

int64

	
Number used to identify the experiment.

	
experiment_name

unicode

	
Name of the experiment file.

	
freq

uint32

	
The frequency used for this experiment,

in kHz. This is the frequency the data

has been filtered to.

	
int_time

float32

[num_records]

	
Integration time in seconds.

	
intf_antenna_count

uint32

	
Number of interferometer array antennas

	
main_antenna_count

uint32

	
Number of main array antennas

	
noise_at_freq

float64

[num_records x

max_num_sequences]

	
Noise at the receive frequency, with

dimension = number of sequences.

20191114: not currently implemented and

filled with zeros. Still a TODO. Note

that records that do not have

num_sequences = max_num_sequences will

have padded zeros. The num_sequences

array should be used to determine the

correct number of sequences to read for

the record.

	
num_beams

uint32

[num_records]

	
The number of beams to calculate for each

record.

	
num_samps

uint32

	
Number of samples in the sampling

period. Each sequence has its own

sampling period. Will also be provided

as the last data_dimension value.

	
num_sequences

int64

[num_records]

	
Number of sampling periods (equivalent to

number sequences transmitted) in the

integration time for each record. Allows

the user to correctly read the data up to

the correct number and remove the padded

zeros in the data array.

	
num_slices

int64

[num_records]

	
Number of slices used simultaneously in

the record by the experiment. If more

than 1, data should exist in another file

for the same time period as that record

for the other slice.

	
pulse_phase_offset

float32

[number of pulses]

	
For pulse encoding phase, in degrees

offset. Contains one phase offset per

pulse in pulses.

	
pulses

uint32

[number of pulses]

	
The pulse sequence in units of the

tau_spacing.

	
rx_sample_rate

float64

	
Sampling rate of the samples in this

file’s data in Hz.

	
samples_data_type

unicode

	
C data type of the samples, provided for

user friendliness. = ‘complex float’

	
scan_start_marker

bool

[num_records]

	
Designates if the record is the first in

a scan (scan is defined by the

experiment).

	
slice_comment

unicode

	
Additional text comment that describes

the slice written in this file. The slice

number of this file is provided in the

filename.

	
sqn_timestamps

float64

[num_records x

max_num_sequences]

	
A list of GPS timestamps corresponding to

the beginning of transmission for each

sampling period in the integration time.

These timestamps come back from the USRP

driver and the USRPs are GPS disciplined

and synchronized using the Octoclock.

Provided in milliseconds since epoch.

Note that records that do not have

num_sequences = max_num_sequences will

have padded zeros. The num_sequences

array should be used to determine the

correct number of sequences to read for

the record.

	
station

unicode

	
Three-letter radar identifier.

	
tau_spacing

uint32

	
The minimum spacing between pulses in

microseconds. Spacing between pulses is

always a multiple of this.

	
tx_pulse_len

uint32

	
Length of the transmit pulse in

microseconds.

antennas_iq site files

Site files are produced by the Borealis code package and have the data in a record by record style format. In site files, the hdf5 group names (ie record names) are given as the timestamp in ms past epoch of the first sequence or sampling period recorded in the record.

The naming convention of the antennas_iq site-structured files are:

[YYYYmmDD].[HHMM].[SS].[station_id].[slice_id].antennas_iq.hdf5.site

For example: 20191105.1400.02.sas.0.antennas_iq.hdf5.site
This is the file that began writing at 14:00:02 UT on November 5 2019 at the Saskatoon site, and it provides data for slice 0 of the experiment that ran at that time.

These files are often bzipped after they are produced.

The file fields under the record name in antennas_iq site files are:

	
Field name

type

	description

	
antenna_arrays_order

[unicode,]

	
States what order the data is in and

describes the data layout for the

num_antennas data dimension. Antennas are

recorded main array ascending and then

interferometer array ascending.

	
beam_azms

[float64,]

	
A list of the beam azimuths for each

beam in degrees off boresite.

	
beam_nums

[uint32,]

	
A list of beam numbers used in this slice

in this record.

	
borealis_git_hash

unicode

	
Identifies the version of Borealis that

made this data. Contains git commit hash

characters. Typically begins with the

latest git tag of the software.

	
data

[complex64,]

	
A contiguous set of samples (complex

float) at given sample rate. Needs to be

reshaped by data_dimensions to be

correctly read.

	
data_descriptors

[unicode,]

	
Denotes what each data dimension

represents. = ‘num_antennas’,

‘num_sequences’, ‘num_samps’ for

antennas_iq

	
data_dimensions

[uint32,]

	
The dimensions in which to reshape the

data. Dimensions correspond to

data_descriptors.

	
data_normalization_factor

float32

	
Scale of all the filters used, multiplied

for a total scale to normalize the data

by.

	
experiment_comment

unicode

	
Comment provided in experiment about the

experiment as a whole.

	
experiment_id

int64

	
Number used to identify the experiment.

	
experiment_name

unicode

	
Name of the experiment file.

	
freq

uint32

	
The frequency used for this experiment,

in kHz. This is the frequency the data

has been filtered to.

	
int_time

float32

	
Integration time in seconds.

	
intf_antenna_count

uint32

	
Number of interferometer array antennas

	
main_antenna_count

uint32

	
Number of main array antennas

	
noise_at_freq

[float64,]

	
Noise at the receive frequency, with

dimension = number of sequences.

20191114: not currently implemented and

filled with zeros. Still a TODO.

	
num_samps

uint32

	
Number of samples in the sampling

period. Each sequence has its own

sampling period. Will also be provided

as the last data_dimension value.

	
num_sequences

int64

	
Number of sampling periods (equivalent to

number sequences transmitted) in the

integration time.

	
num_slices

int64

	
Number of slices used simultaneously in

this record by the experiment. If more

than 1, data should exist in another file

for this time period for the other slice.

	
pulse_phase_offset

[float32,]

	
For pulse encoding phase, in degrees

offset. Contains one phase offset per

pulse in pulses.

	
pulses

[uint32,]

	
The pulse sequence in units of the

tau_spacing.

	
rx_sample_rate

float64

	
Sampling rate of the samples in this

file’s data in Hz.

	
samples_data_type

unicode

	
C data type of the samples, provided for

user friendliness. = ‘complex float’

	
scan_start_marker

bool

	
Designates if the record is the first in

a scan (scan is defined by the

experiment).

	
slice_comment

unicode

	
Additional text comment that describes

the slice written in this file.

	
sqn_timestamps

[float64,]

	
A list of GPS timestamps corresponding to

the beginning of transmission for each

sampling period in the integration time.

These timestamps come from the USRP

driver and the USRPs are GPS disciplined

and synchronized using the Octoclock.

Provided in milliseconds since epoch.

	
station

unicode

	
Three-letter radar identifier.

	
tau_spacing

uint32

	
The minimum spacing between pulses in

microseconds. Spacing between pulses is

always a multiple of this.

	
tx_pulse_len

uint32

	
Length of the transmit pulse in

microseconds.

Site/Array Restructuring

File restructuring to array files is done using an additional code package. Currently, this code is housed within pyDARN [https://github.com/SuperDARN/pydarn]. It is expected that this code will be separated to its own IO code package in the near future.

The site to array file restructuring occurs in the borealis BaseFormat _site_to_array class method, and array to site restructuring is done in the same class _array_to_site method. Both can be found here [https://github.com/SuperDARN/pydarn/blob/master/pydarn/io/borealis/borealis_formats.py].

bfiq v0.4

The pydarn format class for this format is BorealisBfiqv0_4 found in the borealis_formats [https://github.com/SuperDARN/pydarn/blob/master/pydarn/io/borealis/borealis_formats.py].

Borealis software version 0.4 is out of date, see the current format of the bfiq files here [https://borealis.readthedocs.io/en/latest/borealis_data.html#borealis-current-version].

The bfiq format is intended to hold beamformed I and Q data for the main and interferometer arrays. The data is not averaged.

Both site files and array-restructured files exist for this file type. Both are described below.

bfiq array files

Array restructured files are produced after the radar has finished writing a file and contain record data in multi-dimensional arrays so as to avoid repeated values, shorten the read time, and improve human readability. Fields that are unique to the record are written as arrays where the first dimension is equal to the number of records recorded. Other fields that are unique to the slice or experiment (and are therefore repeated for all records) are written only once.

The group names in these files are the field names themselves, greatly reducing the number of group names in the file when compared to site files and making the file much more human readable.

The naming convention of the bfiq array-structured files are:

[YYYYmmDD].[HHMM].[SS].[station_id].[slice_id].bfiq.hdf5

For example: 20191105.1400.02.sas.0.bfiq.hdf5

This is the file that began writing at 14:00:02 UT on November 5 2019 at the Saskatoon site, and it provides data for slice 0 of the experiment that ran at that time. It has been array restructured because it does not have a .site designation at the end of the filename.

These files are zlib compressed which is native to hdf5 and no decompression is necessary before reading using your hdf5 library.

The file fields in the bfiq array files are:

	
FIELD NAME

type

[dimensions]

	description

	
antenna_arrays_order

unicode

[num_antenna_arrays]

	
States what order the data is in and

describes the data layout for the

num_antenna_arrays data dimension

	
beam_azms

float64

[num_records x

max_num_beams]

	
A list of the beam azimuths for each beam

in degrees off boresite. Note that this

is padded with zeroes for any record

which has num_beams less than the

max_num_beams. The num_beams field should

be used to read the correct number of

beams for each record.

	
beam_nums

uint32

[num_records x

max_num_beams]

	
A list of beam numbers used in this slice

in this record. Note that this is padded

with zeroes for any record which has

num_beams less than the max_num_beams.

The num_beams field should be used to

read the correct number of beams for each

record.

	
blanked_samples

uint32

[number of blanked

samples]

	
Samples that should be blanked because

they occurred during transmission times,

given by sample number (index into

decimated data). Can differ from the

pulses array due to multiple slices in a

single sequence. Assumed shared between

records which was a bug fixed in v0.5.

	
borealis_git_hash

unicode

	
Identifies the version of Borealis that

made this data. Contains git commit hash

characters. Typically begins with the

latest git tag of the software.

	
data

complex64

[num_records x

num_antenna_arrays x

max_num_sequences x

max_num_beams x

num_samps]

	
A set of samples (complex float) at given

sample rate. Note that records that do not

have num_sequences = max_num_sequences or

num_beams = max_num_beams will have

padded zeros. The num_sequences and

num_beams arrays should be used to

determine the correct number of sequences

and beams to read for the record.

	
data_descriptors

unicode

[5]

	
Denotes what each data dimension

represents. = ‘num_records’,

‘num_antenna_arrays’,

‘max_num_sequences’, ‘max_num_beams’,

‘num_samps’

	
data_normalization_factor

float32

	
Scale of all the filters used,

multiplied, for a total scale to

normalize the data by.

	
experiment_comment

unicode

	
Comment provided in experiment about the

experiment as a whole.

	
experiment_id

int64

	
Number used to identify the experiment.

	
experiment_name

unicode

	
Name of the experiment file.

	
first_range

float32

	
Distance to use for first range in km.

	
first_range_rtt

float32

	
Round trip time of flight to first range

in microseconds.

	
freq

uint32

	
The frequency used for this experiment,

in kHz. This is the frequency the data

has been filtered to.

	
int_time

float32

[num_records]

	
Integration time in seconds.

	
intf_antenna_count

uint32

	
Number of interferometer array antennas

	
lags

uint32

[number of lags, 2]

	
The lags created from two pulses in the

pulses array. Values have to be from

pulses array. The lag number is lag[1] -

lag[0] for each lag pair.

	
main_antenna_count

uint32

	
Number of main array antennas

	
noise_at_freq

float64

[num_records x

max_num_sequences]

	
Noise at the receive frequency, with

dimension = number of sequences.

20191114: not currently implemented and

filled with zeros. Still a TODO. Note

that records that do not have

num_sequences = max_num_sequences will

have padded zeros. The num_sequences

array should be used to determine the

correct number of sequences to read for

the record.

	
num_beams

uint32

[num_records]

	
The number of beams calculated for each

record. Allows the user to correctly read

the data up to the correct number and

remove the padded zeros in the data

array.

	
num_ranges

uint32

	
Number of ranges to calculate

correlations for.

	
num_samps

uint32

	
Number of samples in the sampling

period. Each sequence has its own

sampling period. Will also be provided

as the last data_dimension value.

	
num_sequences

int64

[num_records]

	
Number of sampling periods (equivalent to

number sequences transmitted) in the

integration time for each record. Allows

the user to correctly read the data up to

the correct number and remove the padded

zeros in the data array.

	
num_slices

int64

[num_records]

	
Number of slices used simultaneously in

the record by the experiment. If more

than 1, data should exist in another file

for the same time period as that record

for the other slice.

	
pulse_phase_offset

float32

[number of pulses]

	
For pulse encoding phase, in degrees

offset. Contains one phase offset per

pulse in pulses.

	
pulses

uint32

[number of pulses]

	
The pulse sequence in units of the

tau_spacing.

	
range_sep

float32

	
Range gate separation (conversion from

time (1/rx_sample_rate) to equivalent

distance between samples), in km.

	
rx_sample_rate

float64

	
Sampling rate of the samples in this

file’s data in Hz.

	
samples_data_type

unicode

	
C data type of the samples, provided for

user friendliness. = ‘complex float’

	
scan_start_marker

bool

[num_records]

	
Designates if the record is the first in

a scan (scan is defined by the

experiment).

	
slice_comment

unicode

	
Additional text comment that describes

the slice written in this file. The slice

number of this file is provided in the

filename.

	
sqn_timestamps

float64

[num_records x

max_num_sequences]

	
A list of GPS timestamps corresponding to

the beginning of transmission for each

sampling period in the integration time.

These timestamps come back from the USRP

driver and the USRPs are GPS disciplined

and synchronized using the Octoclock.

Provided in milliseconds since epoch.

Note that records that do not have

num_sequences = max_num_sequences will

have padded zeros. The num_sequences

array should be used to determine the

correct number of sequences to read for

the record.

	
station

unicode

	
Three-letter radar identifier.

	
tau_spacing

uint32

	
The minimum spacing between pulses in

microseconds. Spacing between pulses is

always a multiple of this.

	
tx_pulse_len

uint32

	
Length of the transmit pulse in

microseconds.

bfiq site files

Site files are produced by the Borealis code package and have the data in a record by record style format. In site files, the hdf5 group names (ie record names) are given as the timestamp in ms past epoch of the first sequence or sampling period recorded in the record.

The naming convention of the bfiq site-structured files are:

[YYYYmmDD].[HHMM].[SS].[station_id].[slice_id].bfiq.hdf5.site

For example: 20191105.1400.02.sas.0.bfiq.hdf5.site
This is the file that began writing at 14:00:02 UT on November 5 2019 at the Saskatoon site, and it provides data for slice 0 of the experiment that ran at that time.

These files are often bzipped after they are produced.

The file fields under the record name in bfiq site files are:

	
Field name

type

	description

	
antenna_arrays_order

[unicode,]

	
States what order the data is in and

describes the data layout for the

num_antenna_arrays data dimension

	
beam_azms

[float64,]

	
A list of the beam azimuths for each

beam in degrees off boresite.

	
beam_nums

[uint32,]

	
A list of beam numbers used in this slice

in this record.

	
blanked_samples

[uint32,]

	
Samples that should be blanked because

they occurred during transmission times,

given by sample number (index into

decimated data). Can differ from the

pulses array due to multiple slices in a

single sequence.

	
borealis_git_hash

unicode

	
Identifies the version of Borealis that

made this data. Contains git commit hash

characters. Typically begins with the

latest git tag of the software.

	
data

[complex64,]

	
A contiguous set of samples (complex

float) at given sample rate. Needs to be

reshaped by data_dimensions to be

correctly read.

	
data_descriptors

[unicode,]

	
Denotes what each data dimension

represents. = ‘num_antenna_arrays’,

‘num_sequences’, ‘num_beams’, ‘num_samps’

for bfiq

	
data_dimensions

[uint32,]

	
The dimensions in which to reshape the

data. Dimensions correspond to

data_descriptors.

	
data_normalization_factor

float32

	
Scale of all the filters used, multiplied

for a total scale to normalize the data

by.

	
experiment_comment

unicode

	
Comment provided in experiment about the

experiment as a whole.

	
experiment_id

int64

	
Number used to identify the experiment.

	
experiment_name

unicode

	
Name of the experiment file.

	
first_range

float32

	
Distance to use for first range in km.

	
first_range_rtt

float32

	
Round trip time of flight to first range

in microseconds.

	
freq

uint32

	
The frequency used for this experiment,

in kHz. This is the frequency the data

has been filtered to.

	
int_time

float32

	
Integration time in seconds.

	
intf_antenna_count

uint32

	
Number of interferometer array antennas

	
lags

[[uint32,],]

	
The lags created from two pulses in the

pulses array. Dimensions are number of

lags x 2. Values have to be from pulses

array. The lag number is lag[1] - lag[0]

for each lag pair.

	
main_antenna_count

uint32

	
Number of main array antennas

	
noise_at_freq

[float64,]

	
Noise at the receive frequency, with

dimension = number of sequences.

20191114: not currently implemented and

filled with zeros. Still a TODO.

	
num_ranges

uint32

	
Number of ranges to calculate

correlations for.

	
num_samps

uint32

	
Number of samples in the sampling

period. Each sequence has its own

sampling period. Will also be provided

as the last data_dimension value.

	
num_sequences

int64

	
Number of sampling periods (equivalent to

number sequences transmitted) in the

integration time.

	
num_slices

int64

	
Number of slices used simultaneously in

this record by the experiment. If more

than 1, data should exist in another file

for this time period for the other slice.

	
pulse_phase_offset

[float32,]

	
For pulse encoding phase, in degrees

offset. Contains one phase offset per

pulse in pulses.

	
pulses

[uint32,]

	
The pulse sequence in units of the

tau_spacing.

	
range_sep

float32

	
Range gate separation (conversion from

time (1/rx_sample_rate) to equivalent

distance between samples), in km.

	
rx_sample_rate

float64

	
Sampling rate of the samples in this

file’s data in Hz.

	
samples_data_type

unicode

	
C data type of the samples, provided for

user friendliness. = ‘complex float’

	
scan_start_marker

bool

	
Designates if the record is the first in

a scan (scan is defined by the

experiment).

	
slice_comment

unicode

	
Additional text comment that describes

the slice written in this file.

	
sqn_timestamps

[float64,]

	
A list of GPS timestamps corresponding to

the beginning of transmission for each

sampling period in the integration time.

These timestamps come from the USRP

driver and the USRPs are GPS disciplined

and synchronized using the Octoclock.

Provided in milliseconds since epoch.

	
station

unicode

	
Three-letter radar identifier.

	
tau_spacing

uint32

	
The minimum spacing between pulses in

microseconds. Spacing between pulses is

always a multiple of this.

	
tx_pulse_len

uint32

	
Length of the transmit pulse in

microseconds.

Site/Array Restructuring

File restructuring to array files is done using an additional code package. Currently, this code is housed within pyDARN [https://github.com/SuperDARN/pydarn]. It is expected that this code will be separated to its own IO code package in the near future.

The site to array file restructuring occurs in the borealis BaseFormat _site_to_array class method, and array to site restructuring is done in the same class _array_to_site method. Both can be found here [https://github.com/SuperDARN/pydarn/blob/master/pydarn/io/borealis/borealis_formats.py].

bfiq to iqdat SDARN (DMap) Conversion

Conversion to SDARN IO (DMap iqdat) is available but can fail based on experiment complexity. The conversion also reduces the precision of the data due to conversion from complex floats to int of all samples. Similar precision is lost in timestamps.

HDF5 is a much more user-friendly format and we encourage the use of this data if possible. Please reach out if you have questions on how to use the Borealis bfiq files.

The mapping from bfiq to iqdat dmap files is completed as follows:

	iqdat_mapping

Class list

	Class DSPCore

	Class DriverOptions

	Class Filtering

	Class Options

	Class RXMetadata

	Class SharedMemoryHandler

	Class SignalProcessingOptions

	Class TXMetadata

	Class USRP

File list

	File decimate.cu

	File decimate.hpp

	File driveroptions.cpp

	File driveroptions.hpp

	File dsp.cu

	File dsp.hpp

	File filtering.cpp

	File filtering.hpp

	File options.cpp

	File options.hpp

	File remez.c

	File remez.h

	File rx_dsp_chain.cu

	File shared_macros.hpp

	File shared_memory.cpp

	File shared_memory.hpp

	File signalprocessingoptions.cpp

	File signalprocessingoptions.hpp

	File usrp.cpp

	File usrp.hpp

	File usrp_driver.cpp

Namespace list

	Namespace @3

	Namespace @5

rawacf v0.4

The pydarn format class for this format is BorealisRawacfv0_4 found in the borealis_formats [https://github.com/SuperDARN/pydarn/blob/master/pydarn/io/borealis/borealis_formats.py].

Borealis software version 0.4 is out of date, see the current format of the rawacf files here [https://borealis.readthedocs.io/en/latest/borealis_data.html#borealis-current-version].

This format is intended to hold beamformed, averaged, correlated data.

Both site files and array-restructured files exist for this file type. Both are described below.

rawacf array files

Array restructured files are produced after the radar has finished writing a file and contain record data in multi-dimensional arrays so as to avoid repeated values, shorten the read time, and improve human readability. Fields that are unique to the record are written as arrays where the first dimension is equal to the number of records recorded. Other fields that are unique to the slice or experiment (and are therefore repeated for all records) are written only once.

The group names in these files are the field names themselves, greatly reducing the number of group names in the file when compared to site files and making the file much more human readable.

The naming convention of the rawacf array-structured files are:

[YYYYmmDD].[HHMM].[SS].[station_id].[slice_id].rawacf.hdf5

For example: 20191105.1400.02.sas.0.rawacf.hdf5

This is the file that began writing at 14:00:02 UT on November 5 2019 at the Saskatoon site, and it provides data for slice 0 of the experiment that ran at that time. It has been array restructured because it does not have a .site designation at the end of the filename.

These files are zlib compressed which is native to hdf5 and no decompression is necessary before reading using your hdf5 library.

The file fields in the rawacf array files are:

	
FIELD NAME

type

[dimensions]

	description

	
beam_azms

float64

[num_records x

max_num_beams]

	
A list of the beam azimuths for each beam

in degrees off boresite. Note that this

is padded with zeroes for any record

which has num_beams less than the

max_num_beams. The num_beams field should

be used to read the correct number of

beams for each record.

	
beam_nums

uint32

[num_records x

max_num_beams]

	
A list of beam numbers used in this slice

in this record. Note that this is padded

with zeroes for any record which has

num_beams less than the max_num_beams.

The num_beams field should be used to

read the correct number of beams for each

record.

	
blanked_samples

uint32

[number of blanked

samples]

	
Samples that should be blanked because

they occurred during transmission times,

given by sample number (index into

decimated data). Can differ from the

pulses array due to multiple slices in a

single sequence. Assumed shared between

records which was a bug fixed in v0.5.

	
borealis_git_hash

unicode

	
Identifies the version of Borealis that

made this data. Contains git commit hash

characters. Typically begins with the

latest git tag of the software.

	
correlation_descriptors

unicode

[4]

	
Denotes what each correlation dimension

(in main_acfs, intf_acfs, xcfs)

represents. = ‘num_records’,

‘max_num_beams’, ‘num_ranges’, ‘num_lags’

	
data_normalization_factor

float32

	
Scale of all the filters used,

multiplied, for a total scale to

normalize the data by.

	
experiment_comment

unicode

	
Comment provided in experiment about the

experiment as a whole.

	
experiment_id

int64

	
Number used to identify the experiment.

	
experiment_name

unicode

	
Name of the experiment file.

	
first_range

float32

	
Distance to use for first range in km.

	
first_range_rtt

float32

	
Round trip time of flight to first range

in microseconds.

	
freq

uint32

	
The frequency used for this experiment,

in kHz. This is the frequency the data

has been filtered to.

	
int_time

float32

[num_records]

	
Integration time in seconds.

	
intf_acfs

complex64

[num_records x

max_num_beams x

num_ranges x

num_lags]

	
Interferometer array correlations. Note

that records that do not have num_beams =

max_num_beams will have padded zeros. The

num_beams array should be used to

determine the correct number of beams to

read for the record.

	
intf_antenna_count

uint32

	
Number of interferometer array antennas

	
lags

uint32

[number of lags, 2]

	
The lags created from two pulses in the

pulses array. Values have to be from

pulses array. The lag number is lag[1] -

lag[0] for each lag pair.

	
main_acfs

complex64

[num_records x

max_num_beams x

num_ranges x

num_lags]

	
Main array correlations. Note

that records that do not have num_beams =

max_num_beams will have padded zeros. The

num_beams array should be used to

determine the correct number of beams to

read for the record.

	
main_antenna_count

uint32

	
Number of main array antennas

	
noise_at_freq

float64

[num_records x

max_num_sequences]

	
Noise at the receive frequency, with

dimension = number of sequences.

20191114: not currently implemented and

filled with zeros. Still a TODO. Note

that records that do not have

num_sequences = max_num_sequences will

have padded zeros. The num_sequences

array should be used to determine the

correct number of sequences to read for

the record.

	
num_beams

uint32

[num_records]

	
The number of beams calculated for each

record. Allows the user to correctly read

the data up to the correct number and

remove the padded zeros in the data

array.

	
num_sequences

int64

[num_records]

	
Number of sampling periods (equivalent to

number sequences transmitted) in the

integration time for each record. Allows

the user to correctly read the data up to

the correct number and remove the padded

zeros in the data array.

	
num_slices

int64

[num_records]

	
Number of slices used simultaneously in

the record by the experiment. If more

than 1, data should exist in another file

for the same time period as that record

for the other slice.

	
pulses

uint32

[number of pulses]

	
The pulse sequence in units of the

tau_spacing.

	
range_sep

float32

	
Range gate separation (conversion from

time (1/rx_sample_rate) to equivalent

distance between samples), in km.

	
rx_sample_rate

float64

	
Sampling rate of the samples in this

file’s data in Hz.

	
samples_data_type

unicode

	
C data type of the samples, provided for

user friendliness. = ‘complex float’

	
scan_start_marker

bool

[num_records]

	
Designates if the record is the first in

a scan (scan is defined by the

experiment).

	
slice_comment

unicode

	
Additional text comment that describes

the slice written in this file.

	
sqn_timestamps

float64

[num_records x

max_num_sequences]

	
A list of GPS timestamps corresponding to

the beginning of transmission for each

sampling period in the integration time.

These timestamps come back from the USRP

driver and the USRPs are GPS disciplined

and synchronized using the Octoclock.

Provided in milliseconds since epoch.

Note that records that do not have

num_sequences = max_num_sequences will

have padded zeros. The num_sequences

array should be used to determine the

correct number of sequences to read for

the record.

	
station

unicode

	
Three-letter radar identifier.

	
tau_spacing

uint32

	
The minimum spacing between pulses in

microseconds. Spacing between pulses is

always a multiple of this.

	
tx_pulse_len

uint32

	
Length of the transmit pulse in

microseconds.

	
xcfs

complex64

[num_records x

max_num_beams x

num_ranges x

num_lags]

	
Cross correlations of interferometer to

main array. Note

that records that do not have num_beams =

max_num_beams will have padded zeros. The

num_beams array should be used to

determine the correct number of beams to

read for the record.

rawacf site files

Site files are produced by the Borealis code package and have the data in a record by record style format. In site files, the hdf5 group names (ie record names) are given as the timestamp in ms past epoch of the first sequence or sampling period recorded in the record.

The naming convention of the rawacf site-structured files are:

[YYYYmmDD].[HHMM].[SS].[station_id].[slice_id].rawacf.hdf5.site

For example: 20191105.1400.02.sas.0.rawacf.hdf5.site
This is the file that began writing at 14:00:02 UT on November 5 2019 at the Saskatoon site, and it provides data for slice 0 of the experiment that ran at that time.

These files are often bzipped after they are produced.

The file fields under the record name in rawacf site files are:

	
Field name

type

	description

	
beam_azms

[float64,]

	
A list of the beam azimuths for each

beam in degrees off boresite.

	
beam_nums

[uint32,]

	
A list of beam numbers used in this slice

in this record.

	
blanked_samples

[uint32,]

	
Samples that should be blanked because

they occurred during transmission times,

given by sample number (index into

decimated data). Can differ from the

pulses array due to multiple slices in a

single sequence.

	
borealis_git_hash

unicode

	
Identifies the version of Borealis that

made this data. Contains git commit hash

characters. Typically begins with the

latest git tag of the software.

	
correlation_descriptors

[unicode,]

	
Denotes what each correlation dimension

(in main_acfs, intf_acfs, xcfs)

represents. (‘num_beams, ‘num_ranges’,

‘num_lags’)

	
correlation_dimensions

[uint32,]

	
The dimensions in which to reshape the

acf or xcf datasets. Dimensions

correspond to correlation_descriptors.

	
data_normalization_factor

float32

	
Scale of all the filters used, multiplied

for a total scale to normalize the data

by.

	
experiment_comment

unicode

	
Comment provided in experiment about the

experiment as a whole.

	
experiment_id

int64

	
Number used to identify the experiment.

	
experiment_name

unicode

	
Name of the experiment file.

	
first_range

float32

	
Distance to use for first range in km.

	
first_range_rtt

float32

	
Round trip time of flight to first range

in microseconds.

	
freq

uint32

	
The frequency used for this experiment,

in kHz. This is the frequency the data

has been filtered to.

	
int_time

float32

	
Integration time in seconds.

	
intf_acfs

[complex64,]

	
Interferometer array correlations.

	
intf_antenna_count

uint32

	
Number of interferometer array antennas

	
lags

[[uint32,],]

	
The lags created from two pulses in the

pulses array. Dimensions are number of

lags x 2. Values have to be from pulses

array. The lag number is lag[1] - lag[0]

for each lag pair.

	
main_acfs

[complex64,]

	
Main array correlations.

	
main_antenna_count

uint32

	
Number of main array antennas

	
noise_at_freq

[float64,]

	
Noise at the receive frequency, with

dimension = number of sequences.

20191114: not currently implemented and

filled with zeros. Still a TODO.

	
num_sequences

int64

	
Number of sampling periods (equivalent to

number sequences transmitted) in the

integration time.

	
num_slices

int64

	
Number of slices used simultaneously in

this record by the experiment. If more

than 1, data should exist in another file

for this time period for the other slice.

	
pulses

[uint32,]

	
The pulse sequence in units of the

tau_spacing.

	
range_sep

float32

	
Range gate separation (conversion from

time (1/rx_sample_rate) to equivalent

distance between samples), in km.

	
rx_sample_rate

float64

	
Sampling rate of the samples in this

file’s data in Hz.

	
samples_data_type

unicode

	
C data type of the samples, provided for

user friendliness. = ‘complex float’

	
scan_start_marker

bool

	
Designates if the record is the first in

a scan (scan is defined by the

experiment).

	
slice_comment

unicode

	
Additional text comment that describes

the slice written in this file.

	
sqn_timestamps

[float64,]

	
A list of GPS timestamps corresponding to

the beginning of transmission for each

sampling period in the integration time.

These timestamps come from the USRP

driver and the USRPs are GPS disciplined

and synchronized using the Octoclock.

Provided in milliseconds since epoch.

	
station

unicode

	
Three-letter radar identifier.

	
tau_spacing

uint32

	
The minimum spacing between pulses in

microseconds. Spacing between pulses is

always a multiple of this.

	
tx_pulse_len

uint32

	
Length of the transmit pulse in

microseconds.

	
xcfs

[complex64,]

	
Cross correlations of interferometer to

main array.

Site/Array Restructuring

File restructuring to array files is done using an additional code package. Currently, this code is housed within pyDARN [https://github.com/SuperDARN/pydarn]. It is expected that this code will be separated to its own IO code package in the near future.

The site to array file restructuring occurs in the borealis BaseFormat _site_to_array class method, and array to site restructuring is done in the same class _array_to_site method. Both can be found here [https://github.com/SuperDARN/pydarn/blob/master/pydarn/io/borealis/borealis_formats.py].

rawacf to rawacf SDARN (DMap) Conversion

Conversion to SDARN IO (DMap rawacf) is available but can fail based on experiment complexity. The conversion also reduces the precision of the data due to conversion from complex floats to int of all samples. Similar precision is lost in timestamps.

HDF5 is a much more user-friendly format and we encourage the use of this data if possible. Please reach out if you have questions on how to use the Borealis rawacf files.

The mapping to rawacf dmap files is completed as follows:

	rawacf_mapping

rawrf v0.4

The pydarn format class for this format is BorealisRawrfv0_4 found in the borealis_formats [https://github.com/SuperDARN/pydarn/blob/master/pydarn/io/borealis/borealis_formats.py].

Borealis software version 0.4 is out of date, see the current format of the rawrf files here [https://borealis.readthedocs.io/en/latest/borealis_data.html#borealis-current-version].

This format is intended to hold high bandwidth, non-filtered raw data from every antenna.

This format is only produced in a site-style, record by record format and is only available to be produced on request. Please note that this format
can cause radar operating delays and may reduce number of averages in an integration, for example.

rawrf site files

Site files are produced by the Borealis code package and have the data in a record by record style format. In site files, the hdf5 group names (ie record names) are given as the timestamp in ms past epoch of the first sequence or sampling period recorded in the record.

The naming convention of the rawrf site-structured files are:

[YYYYmmDD].[HHMM].[SS].[station_id].rawrf.hdf5.site

For example: 20191105.1400.02.sas.rawrf.hdf5.site

This is the file that began writing at 14:00:02 UT on November 5 2019 at the Saskatoon site, and it provides data the experiment that ran at that time.
Since rawrf is pre-filtered, this data does not need a slice identifier because it contains all the samples being taken at that time. Some familiarity
with the experiment may be necessary to understand the data. This is primarily a debug format for engineering purposes.

These files are often bzipped after they are produced.

The file fields under the record name in rawrf site files are:

	
Field name

type

	description

	
borealis_git_hash

unicode

	
Identifies the version of Borealis that

made this data. Contains git commit hash

characters. Typically begins with the

latest git tag of the software.

	
data

[complex64,]

	
A contiguous set of samples (complex

float) at given sample rate. Needs to be

reshaped by data_dimensions to be

correctly read.

	
data_descriptors

[unicode,]

	
Denotes what each data dimension

represents. = ‘num_sequences’,

‘num_antennas’, ‘num_samps’ for

rawrf

	
data_dimensions

[uint32,]

	
The dimensions in which to reshape the

data. Dimensions correspond to

data_descriptors.

	
experiment_comment

unicode

	
Comment provided in experiment about the

experiment as a whole.

	
experiment_id

int64

	
Number used to identify the experiment.

	
experiment_name

unicode

	
Name of the experiment file.

	
int_time

float32

	
Integration time in seconds.

	
intf_antenna_count

uint32

	
Number of interferometer array antennas

	
main_antenna_count

uint32

	
Number of main array antennas

	
num_samps

uint32

	
Number of samples in the sampling

period. Each sequence has its own

sampling period. Will also be provided

as the last data_dimension value.

	
num_sequences

int64

	
Number of sampling periods (equivalent to

number sequences transmitted) in the

integration time.

	
num_slices

int64

	
Number of slices used simultaneously in

this record by the experiment. If more

than 1, data should exist in another file

for this time period for the other slice.

	
rx_center_freq

float64

	
Center frequency of the sampled data

in kHz.

	
rx_sample_rate

float64

	
Sampling rate of the samples in this

file’s data in Hz.

	
samples_data_type

unicode

	
C data type of the samples, provided for

user friendliness. = ‘complex float’

	
scan_start_marker

bool

	
Designates if the record is the first in

a scan (scan is defined by the

experiment).

	
sqn_timestamps

[float64,]

	
A list of GPS timestamps corresponding to

the beginning of transmission for each

sampling period in the integration time.

These timestamps come from the USRP

driver and the USRPs are GPS disciplined

and synchronized using the Octoclock.

Provided in milliseconds since epoch.

	
station

unicode

	
Three-letter radar identifier.

Site/Array Restructuring

File restructuring to array files is not done for this format.

Struct list

	Struct rx_slice

	Struct rx_slice::lag

Class DSPCore

	
class DSPCore

	Contains the core DSP work done on the GPU.

Class DriverOptions

	
class DriverOptions : public Options

	

Class Filtering

	
class Filtering

	Class for filtering.

Class Options

	
class Options

	Subclassed by DriverOptions, SignalProcessingOptions

Class RXMetadata

	
class RXMetadata

	Wrapper for the USRP RX metadata object.

Used to hold and initialize a new tx_metadata_t object. Creates getters and setters to access properties.

Class SharedMemoryHandler

	
class SharedMemoryHandler

	

Class SignalProcessingOptions

	
class SignalProcessingOptions : public Options

	

Class TXMetadata

	
class TXMetadata

	Wrapper for the USRP TX metadata object.

Used to hold and initialize a new tx_metadata_t object. Creates getters and setters to access properties.

Class USRP

	
class USRP

	Contains an abstract wrapper for the USRP object.

File driveroptions.cpp

File driveroptions.hpp

	
class DriverOptions : public Options

	
#include <driveroptions.hpp>

Public Functions

	
explicit DriverOptions()

	

	
std::string get_device_args() const

	

	
std::string get_clk_addr() const

	

	
std::string get_tx_subdev() const

	

	
std::string get_main_rx_subdev() const

	

	
std::string get_interferometer_rx_subdev() const

	

	
std::string get_pps() const

	

	
std::string get_ref() const

	

	
std::string get_cpu() const

	

	
std::string get_otw() const

	

	
std::string get_gpio_bank_high() const

	

	
std::string get_gpio_bank_low() const

	

	
uint32_t get_atr_rx() const

	

	
uint32_t get_atr_tx() const

	

	
uint32_t get_atr_xx() const

	

	
uint32_t get_atr_0x() const

	

	
uint32_t get_lo_pwr() const

	

	
uint32_t get_agc_st() const

	

	
uint32_t get_test_mode() const

	

	
double get_tr_window_time() const

	

	
double get_agc_signal_read_delay() const

	

	
uint32_t get_main_antenna_count() const

	

	
uint32_t get_interferometer_antenna_count() const

	

	
double get_ringbuffer_size() const

	

	
std::vector<size_t> get_receive_channels() const

	

	
std::vector<size_t> get_transmit_channels() const

	

	
std::string get_driver_to_radctrl_identity() const

	

	
std::string get_driver_to_dsp_identity() const

	

	
std::string get_driver_to_brian_identity() const

	

	
std::string get_router_address() const

	

	
std::string get_radctrl_to_driver_identity() const

	

	
std::string get_dsp_to_driver_identity() const

	

	
std::string get_brian_to_driver_identity() const

	

	
std::string get_ringbuffer_name() const

	

Private Members

	
std::string devices_

	

	
std::string clk_addr_

	

	
std::string tx_subdev_

	

	
std::vector<size_t> receive_channels_

	

	
std::vector<size_t> transmit_channels_

	

	
std::string main_rx_subdev_

	

	
std::string interferometer_rx_subdev_

	

	
std::string pps_

	

	
std::string ref_

	

	
std::string cpu_

	

	
std::string otw_

	

	
std::string gpio_bank_high_

	

	
std::string gpio_bank_low_

	

	
double tr_window_time_

	

	
double agc_signal_read_delay_

	

	
uint32_t main_antenna_count_

	

	
uint32_t interferometer_antenna_count_

	

	
double ringbuffer_size_bytes_

	

	
uint32_t atr_rx_

	

	
uint32_t atr_tx_

	

	
uint32_t atr_xx_

	

	
uint32_t atr_0x_

	

	
uint32_t agc_st_

	

	
uint32_t lo_pwr_

	

	
uint32_t test_mode_

	

	
std::string router_address_

	

	
std::string driver_to_radctrl_identity_

	

	
std::string driver_to_dsp_identity_

	

	
std::string driver_to_brian_identity_

	

	
std::string radctrl_to_driver_identity_

	

	
std::string dsp_to_driver_identity_

	

	
std::string brian_to_driver_identity_

	

	
std::string ringbuffer_name_

	

File filtering.cpp

File options.cpp

File options.hpp

	
class Options

	
#include <options.hpp>

Subclassed by DriverOptions, SignalProcessingOptions

Protected Functions

	
void parse_config_file()

	

Protected Attributes

	
pt::ptree config_pt

	

File remez.c

Functions

	
void CreateDenseGrid(int r, int numtaps, int numband, const double bands[], const double des[], const double weight[], int gridsize, double Grid[], double D[], double W[], int symmetry, int griddensity)

	

	
void InitialGuess(int r, int Ext[], int gridsize)

	

	
void CalcParms(int r, int Ext[], double Grid[], double D[], double W[], double ad[], double x[], double y[])

	

	
double ComputeA(double freq, int r, double ad[], double x[], double y[])

	

	
void CalcError(int r, double ad[], double x[], double y[], int gridsize, double Grid[], double D[], double W[], double E[])

	

	
int Search(int r, int Ext[], int gridsize, double E[])

	

	
void FreqSample(int N, double A[], double h[], int symm)

	

	
int isDone(int r, int Ext[], double E[])

	

	
int remez(double h[], int numtaps, int numband, const double bands[], const double des[], const double weight[], int type, int griddensity)

	

File remez.h

Defines

	
CONST

	

	
BANDPASS

	

	
DIFFERENTIATOR

	

	
HILBERT

	

	
NEGATIVE

	

	
POSITIVE

	

	
Pi

	

	
Pi2

	

	
GRIDDENSITY

	

	
MAXITERATIONS

	

Functions

	
int remez(double h[], int numtaps, int numband, const double bands[], const double des[], const double weight[], int type, int griddensity)

	

File rx_dsp_chain.cu

Functions

	
int main(int argc, char **argv)

	

File shared_macros.hpp

Defines

	
COLOR_BLACK(x)

	

	
COLOR_RED(x)

	

	
COLOR_GREEN(x)

	

	
COLOR_YELLOW(x)

	

	
COLOR_BLUE(x)

	

	
COLOR_MAGENTA(x)

	

	
COLOR_CYAN(x)

	

	
COLOR_WHITE(x)

	

	
RUNTIME_MSG(x)

	

	
DEBUG_MSG(x)

	

	
TIMEIT_IF_TRUE_OR_DEBUG(truth, msg, x)

	

File shared_memory.cpp

Functions

	
std::string random_string(size_t length)

	Generates a string of random characters.

This string is used for creation of named shared memory.

	Parameters

	length – [in] The length of desired string.

	Returns

	A string of random characters.

	
boost::interprocess::mapped_region shr_mem_create(std::string name, size_t size)

	

	
boost::interprocess::mapped_region shr_mem_open(std::string name)

	

File shared_memory.hpp

Functions

	
std::string random_string(size_t length)

	Generates a string of random characters.

This string is used for creation of named shared memory.

	Parameters

	length – [in] The length of desired string.

	Returns

	A string of random characters.

	
class SharedMemoryHandler

	
#include <shared_memory.hpp>

Public Functions

	
explicit SharedMemoryHandler(std::string name)

	

	
explicit SharedMemoryHandler()

	

	
void create_shr_mem(size_t mem_size)

	

	
void open_shr_mem()

	

	
void *get_shrmem_addr()

	

	
void remove_shr_mem()

	

	
std::string get_region_name()

	

Private Members

	
std::string region_name

	

	
boost::interprocess::mapped_region shr_region

	

File signalprocessingoptions.cpp

File signalprocessingoptions.hpp

	
class SignalProcessingOptions : public Options

	
#include <signalprocessingoptions.hpp>

Public Functions

	
explicit SignalProcessingOptions()

	

	
uint32_t get_main_antenna_count() const

	

	
uint32_t get_interferometer_antenna_count() const

	

	
std::string get_router_address() const

	

	
std::string get_dsp_radctrl_identity() const

	

	
std::string get_dsp_driver_identity() const

	

	
std::string get_dsp_exphan_identity() const

	

	
std::string get_dsp_dw_identity() const

	

	
std::string get_dspbegin_brian_identity() const

	

	
std::string get_dspend_brian_identity() const

	

	
std::string get_radctrl_dsp_identity() const

	

	
std::string get_driver_dsp_identity() const

	

	
std::string get_brian_dspbegin_identity() const

	

	
std::string get_brian_dspend_identity() const

	

	
std::string get_exphan_dsp_identity() const

	

	
std::string get_dw_dsp_identity() const

	

	
std::string get_ringbuffer_name() const

	

Private Members

	
uint32_t main_antenna_count

	

	
uint32_t interferometer_antenna_count

	

	
std::string router_address

	

	
std::string dsp_to_radctrl_identity

	

	
std::string dsp_driver_identity

	

	
std::string dsp_exphan_identity

	

	
std::string dsp_dw_identity

	

	
std::string dspbegin_brian_identity

	

	
std::string dspend_brian_identity

	

	
std::string radctrl_dsp_identity

	

	
std::string driver_dsp_identity

	

	
std::string brian_dspbegin_identity

	

	
std::string brian_dspend_identity

	

	
std::string exphan_dsp_identity

	

	
std::string dw_dsp_identity

	

	
std::string ringbuffer_name

	

File usrp.cpp

Namespace @3

	
namespace [anonymous]

	

Namespace @5

	
namespace [anonymous]

	

Struct rx_slice

	
struct rx_slice

	

Struct rx_slice::lag

	
struct lag

	

 _images/math/9d6cbfcae8ca67103a83d93d3f75b30637545e9c.png

_images/math/9de542cd3a85a49c22cb4ce7ce56397ea1935487.png
o = 2nRk-L

_images/math/86c9c5b4bcd3336c637ca2631fc192da15fc5162.png
N
ylm] = y[RI] = & 3" xRl — nlb[n], k = mmod P
—

_images/math/929039b6f4f6cef8a88e656ad1f86a69a93b8a44.png
2[RI — nh[n]el @t

M=

% 3 2[Rl — n]h[)fE) =

- -

_images/math/b12a7c621de723ee6485072df2e6a2a7940fe992.png
hin

_images/math/b85ab8559982d6df8b8bc713d94d786750659b06.png
M = Py

_images/math/835c5a5cd22f152aa0d53a5a4e93efb2dbaddbf9.png
N
yim] = y{RI) = " 2[Rl = n]bumod p)
—

_images/math/867c51d5a66e981dc31c25c5a0dbc35496176ab9.png
= |

_images/math/7b22543df34ec7a2c80b915646591f6cc5eb31f8.png

_images/math/7bb4e618c6f120a0d058948617036730f0e077b3.png

nav.xhtml

 Table of Contents

 		
 Welcome to Borealis’s documentation!

 		
 SuperDARN Canada System Specifications

 		
 Digital Radio Equipment

 		
 Control Computer

 		
 Networking

 		
 Rack and Cabling

 		
 Full System Setup Procedures

 		
 Hardware

 		
 System Overview and Rack Setup

 		
 USRPs

 		
 Pre-amps

 		
 Computer and Networking

 		
 Software

 		
 Starting and Stopping the Radar

 		
 Manual Start-up

 		
 Automated Start-up

 		
 Stopping the Radar

 		
 Scheduling

 		
 Building an Experiment

 		
 Introduction to Borealis Slices

 		
 Interfacing Types Between Slices

 		
 Slice Interfacing Examples

 		
 Writing an Experiment

 		
 Experiment-Wide Attributes

 		
 Slice Keys

 		
 Experiment Example

 		
 Config Parameters

 		
 Borealis Processes

 		
 Runtime Processes

 		
 experiment_handler package

 		
 radar_control package

 		
 Brian

 		
 Rx Signal Processing

 		
 USRP N200 Driver

 		
 data_write package

 		
 Experiment Components

 		
 experiment_prototype package

 		
 experiments package

 		
 Utils

 		
 radar_status package

 		
 sample_building package

 		
 utils package

 		
 Borealis Data Files

 		
 Data Generation

 		
 Borealis filetypes

 		
 Borealis current version

 		
 Previous versions

 		
 Reading Data

 		
 Data Storage and Deletion

 		
 Borealis Monitoring

 		
 Nagios

 		
 Installation

 		
 Lab Testing

 		
 Tools

 		
 NEC

 		
 NTP

 		
 Common Failure Modes

 		
 N200 Power loss

 		
 N200 10MHz reference loss

 		
 N200 PPS reference loss

 		
 N200 Ethernet loss

 		
 Borealis Startup with N200 PPS reference missing

 		
 Octoclock GPS Power loss

 		
 TXIO Cable disconnect from N200 or Transmitter

 		
 Shared memory full/Borealis unable to delete shared memory

 		
 remote_server.py Segfaults, other programs segfault (core-dump)

 		
 ‘CPU stuck’ messages from kernel, not possible to reboot

 		
 Glossary

_images/4nec2_ttfd_closeup.png

_images/4nec2_ttfd_standard.png

_images/brian_zmq.png
Router Connections

Experiment

Handler

Radar Control Data Wiite

=

Ry Signal

USRP driver scoomig

_images/4nec2_ttfd_wideview.png

_images/USRP-rack-rev4.png
ROS and GC214 (42V)

FElEEEE bk -

TR Breakout to Transmitters

Power Supply
15V Power Supply

RX Phasing Matrix

RX Phasing Matrix

Power Supply &
Timing Signals

Digital Synthesis
Network Switch

Frequency Synthesizer

QNX computer

Linux computer

upPs

Borealis (42U)

Network Switch
Preamplifiers

4 USRPs

Network Switch
Ettus Octoclock

4 USRPs

Network Switch
Ettus Octoclock

4 USRPs

Network Switch
Ettus Octoclock

4 USRPs

Linux computer

Linux computer

upPs

_images/ntp_adev_example.png
ocadev

1074

1075

107°

1077

Allan Deviation - Clockstats PPS Driver

100

10t 10? 10° 10¢ 10°
Tau

108

_images/ntp_loopstats_freqoffset.png
freq offset (ppm)

Loopstats freq offset (ppm)

500

300

200

100 4

-100

0.0 02 04 06 08 10 12 14
time (s) 1e6

_images/cutlass.png
CUTLASS-STYLE SLICE INTERFACING

e 0 has 2 unique orea, 10500 Wiz for example. Sice
nother tireq, 13200 kHz.

SCAN #1

Averaging period #1

_images/dsp_data_flow.jpg
Example of 3 stage decimation

using 3 RX frequencies

Wideband recelved samples for

‘example 8 antenna main,2 antenna interferometer array

Mo
m
e
™
"
Vs
Ve
wr
o
it
Freq #1 Freq #2
Siie
o
Bandpass data m
setdisdincton W
Freq#1 | W 1 -
Freq#2 | M 1 M
Freq#3 | M 1 s
Ve
wr

Freq #1

Freq#2 Freq#d

Freq#1

Frea#2 Frea#3

Freq#3

_images/ntp_peerstats_dispersion.png
Dispersion (s)

Peer dispersion

0.0

02

0.4

0.6

0.8
time (s)

10

12

14

16

1e6

_images/ntp_peerstats_dispersion_zoom.png
Peer dispersion

0.006

0.005

0.004

Dispersion (s)

°
5
4

0.002

0.001

time (s) 1e6

_images/ntp_loopstats_offset.png
offset (s)

Loopstats offset

0.10

0.08

0.06

0.04

0.02 |

0.00

-0.02

-0.04

0.0 02 0.4 0.6 0.8 10 12 14
time (s) 1e6

_images/ntp_peerstats_delay.png
Delay (s)

Peer delay

0.10

0.08

0.8
time (s) 1e6

_images/ntp_peerstats_offset.png
offset (s)

0.004

0.003

0.002

0.001

0.000

~0.001

~0.002

~0.003

~0.004

Peer offset

12 13
time (s)

14

15

16
1le6

_static/file.png

_images/one-experiment-all-interfacing-types.png
ONE EXPERIMENT, ALL INTERFACING
TYPES (A THEORETICAL EXAMPLE)

SCAN #1

Averaging period #1

Averaging period #2

SCAN #2

Averaging period #1

E=a

_static/plus.png

_static/minus.png

_images/math/f4c658cf79231044e907f4fcdc892e997809e5c3.png
Ok

_images/math/da155ebce130ea829078b691beea6756d7b3bd8b.png
bi[n] = hin]e/(o2 n7)

_images/math/fd4efd6d6e1054659048e15873f5243f601170a4.png
-

_images/math/f6eef1bf9a110a5b6a9f0b84c889818a676d05a2.png
N+M-|%

_images/pattern_no_tx6_no_tx12_boresite.png

_images/ringbuffer.png
Muli-USRP|

Ringbuffer Visualization

SYYYYYYYYY

Tottset= UF2) % Torap

_images/pattern_bm1.png

_images/pattern_no_tx6_no_tx12_bm1.png

_images/scheduling_diagram.png
DSWG.
Scheduling repository.

(Github)
Updated monthly

1
sdcopy (Local Instiution server)
‘Generates new schedules
Running unison
Runs local_scd_serverpy

Borealis Borealis 2 Borealis 3 Borealis 4 Borealis 5
Runs start_radarsh
Runs remote_serverpy
Generates 5CD files
Runs ‘atg’service
Running unison

_images/themisscan.png
THEMISSCAN SLICE INTERFACING

Slice 0 has a beam_order with a full scan, ie
9.10,11,12,13,14,15]

with only a camping beam, ie.
77.7.7.7.0.7.7.7.7)

777777,

SCAN #1

Averaging period #1

SLICEQ

Sequence #1

Averaging period #2

E==a

Sequence #1

_images/rx_sig_updated.png
radar control data socket

=

ustp driver socket

=

rx_dsp_chain

=

Receive+deserialize radar
control packet

Configure bandpass and
lowpass taps

=
Receive USRP driver

packet

Rearrange information into
structures that hold slice
information

Spawn asynchronous
DSP core activity

rx_signal_processing
[T bsPcore]

Allocate and copy RF
samples to GPU

v

Allocate and copy
bandpass taps to GPU

v

Allocate space for
bandpass filter output
on GPU

Host side
async callback

Bandpass
decimation

v

Allocate and copy
lowpass taps on GPU

v

Allocate space for
lowpass filter output on
GPU

Lowpass decimation

Host side
async callback

Memory transfer
callback

Acknowledge initial
memory transfer has
completed

Postprocessing
callback

=
Report GPU decimation
kemnel timing

JENN A

Beamforming/ACF
computations

JENN A

Free GPU and memory
resources

rad:

rad:

ar control ack socket

=

ar control timing socket

=

-

-

_images/sas-borealis-rack1.jpg
7
l’.m.IE!.ﬁS..Il

N\ I AV IT T

/2N

Jw«\wﬁhw‘ﬁ ber
19”9000

_images/twofsound.png
TWOFSOUND SLICE INTERFACING

Slices 0 and 1 have unique tfreq values, for example 10500 and
13200 (kHz).

SCAN #1

Averaging period #1

SCAN #2

Averaging period #1

_images/math/c2aa3dff9bffb099e9dff196fd36aed56ec16baf.png

_images/math/bf2ad608b8c9cea2c1e38794602d8c4b54755184.png
PR=— =int,

1<P<F,

_images/math/d5a086dc4a07634728fac08c5455fec4c4da1b7d.png
Frew =

_images/math/c53370222fa4ff30b1eea4e917fb17bc8723e2a2.png

_images/pattern.png

_images/txio_pcb_connections.jpg
€

) e ouumat iy

o
IDLE ™ GNp-3* ¥

_images/txio_rear.jpg

_images/txio_lfrx_pwr.jpg

_images/txio_lfrx_signals.jpg

_images/math/345727c80e52731ff2858ebdb893ed49504da2bd.png

_images/math/3bfb3a64189a14b2704f4610827762d5e3145114.png

_images/math/19eef1966f7c545af3ac8c0fa486974d873e3c65.png

_images/math/1ebe654cc7b8f2a0d8100aa5825cf2b9021adbbc.png

_images/txio_dsub_fanpwr.jpg

_images/txio_fan_direction.jpg

_images/math/4f5b170dd3bf7c96a5d8d2dc2cfe574f360e7e75.png

_images/math/4fdfee929b38755b9d0f5eece9936ece392420ea.png

_images/math/4d7ef114f8d33647001f586ffed8ddb43364820b.png
NF,<N+M—L%1

_images/math/4de38b99ee191f10edcc833fd5bd26580294ec4e.png

_images/math/788eb4496aaed46f45c535b4d83467f68ad2dca2.png

_images/math/5b7752c757e0b691a80ab8227eadb8a8389dc58a.png

_images/math/6de01847139a32d697e2da47baa9f6b9ffbd99b0.png

_images/math/45ecc19e457292009118f419387b99150a817c01.png

_images/math/4abba779877abb276b98ccb2b4ba9bf2e41947ab.png

_images/math/3f91aeab0a7560f29d571bbdd1029376e38792a6.png
NF,>N+M—L%1

